Advertisement

How accurate are the popular PCM/GB continuum solvation models for calculating the solvation energies of amino acid side-chain analogs?

  • Mingwei Wen
  • Jinliang Jiang
  • Zhi-Xiang WangEmail author
  • Chun WuEmail author
Regular Article

Abstract

Implicit/continuum solvation models are effective methods that are widely used to account for solvation effects. Because a large number of empirical parameters are used in these models, it is of significance to identify proper parameter sets. To assess the performance of the popular polarizable continuum models in Gaussian 03 (G03) and 09 (G09) and generalized born (GB) models in AMBER 11, we have computed the solvation energies of fifteen neutral amino acid side-chain analogs at various levels by systematically varying parameters (over 2,668 sets of calculations). The evaluation using the experimental values as standards leads to the following observations: (1) among all the tested methods, IEFPCM/UAKS rather than the default IEFPCM/UA0 in G03 performs best with a 0.21 ± 0.21 kcal/mol of mean absolute deviation ± standard deviation of unsigned errors (MAD ± SD). Unexpectedly, the default IEFPCM newly implemented in G09 performs poorly. Detailed analyses reveal that the electrostatic contribution was not accounted properly, due to changing the default Alpha scaling factor from 1.2 in G03 to 1.1 in G09. When setting the factor back to 1.2, the G09 IEFPCM with a continuous surface charge model performs comparably to the G03 IEFPCM with a point surface charge model. (2) The SMD model performs well in G09 but slightly less accurate than the IEFPCM/UAKS in G03 by ~0.1 kcal/mol of MAD. (3) In AMBER 11, when the atomic partial charges derived from the commonly used HF/6-31G* electrostatic potentials are used, GB7 in combination with mBondi2 radii with 1.01 ± 0.67 kcal/mol of MAD ± SD performs better than the combinations of other GB methods and radii. However, GB8/Bondi, when using the charges derived from MP2/6-311++G** calculations, performs best with 0.78 ± 0.58 kcal/mol of MAD ± SD) among all GB calculations. (4) The use of the charges, derived from QM calculations in the condense phase, does not improve the performance, indicating that reoptimization of GB parameters is required for using the condense phase charges.

Keywords

PCM model GB model Amino acid side-chain analogs DFT calculations 

Notes

Acknowledgments

This study was supported by the Chinese Academy of Sciences and NSFC (No: 21173263 and 21373216 to ZXW) and the startup fund of Rowan university (to CW).

Supplementary material

214_2014_1471_MOESM1_ESM.doc (9.5 mb)
Supplementary material 1 (DOC 9774 kb)
214_2014_1471_MOESM2_ESM.doc (706 kb)
Supplementary material 2 (DOC 706 kb)

References

  1. 1.
    Cramer CJ, Truhlar DG (2008) Acc Chem Res 41(6):760–768CrossRefGoogle Scholar
  2. 2.
    Orozco M, Luque FJ (2000) Chem Rev 100(11):4187–4225CrossRefGoogle Scholar
  3. 3.
    Simonson T (2001) Curr Opin Struct Biol 11(2):243–252CrossRefGoogle Scholar
  4. 4.
    Feig M, Brooks CL (2004) Curr Opin Struct Biol 14(2):217–224CrossRefGoogle Scholar
  5. 5.
    Shirts MR, Pande VS (2005) J Chem Phys 122(13):134508CrossRefGoogle Scholar
  6. 6.
    Deng YQ, Roux B (2004) J Phys Chem B 108(42):16567–16576CrossRefGoogle Scholar
  7. 7.
    Mobley DL, Bayly CI, Cooper MD, Shirts MR, Dill KA (2009) J Chem Theory Comput 5(2):350–358CrossRefGoogle Scholar
  8. 8.
    Tomasi J, Persico M (1994) Chem Rev 94(7):2027–2094CrossRefGoogle Scholar
  9. 9.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105(8):2999–3093CrossRefGoogle Scholar
  10. 10.
    Roux B, Simonson T (1999) Biophys Chem 78(1–2):9–10Google Scholar
  11. 11.
    Bashford D, Case DA (2000) Ann Rev Phys Chem 51:129–152CrossRefGoogle Scholar
  12. 12.
    Tsui V, Case DA (2000) Biopolymers 56(4):275–291CrossRefGoogle Scholar
  13. 13.
    Cammi R, Tomasi J (1995) J Comput Chem 16(12):1449–1458CrossRefGoogle Scholar
  14. 14.
    Su P, Li H (2009) J Chem Phys 130(7):074109CrossRefGoogle Scholar
  15. 15.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55(1):117–129CrossRefGoogle Scholar
  16. 16.
    Miertus S, Tomasi J (1982) Chem Phys 65(2):239–245CrossRefGoogle Scholar
  17. 17.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255(4–6):327–335CrossRefGoogle Scholar
  18. 18.
    Cossi M, Barone V (1998) J Chem Phys 109(15):6246–6254CrossRefGoogle Scholar
  19. 19.
    Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107(8):3032–3041CrossRefGoogle Scholar
  20. 20.
    Mennucci B, Tomasi J (1997) J Chem Phys 106(12):5151–5158CrossRefGoogle Scholar
  21. 21.
    Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101(49):10506–10517CrossRefGoogle Scholar
  22. 22.
    Tomasi J, Mennucci B, Cances E (1999) J Mol Struct 464(1–3):211–226CrossRefGoogle Scholar
  23. 23.
    Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 5:799–805CrossRefGoogle Scholar
  24. 24.
    Andzelm J, Kolmel C, Klamt A (1995) J Chem Phys 103(21):9312–9320CrossRefGoogle Scholar
  25. 25.
    Barone V, Cossi M (1998) J Phys Chem A 102(11):1995–2001CrossRefGoogle Scholar
  26. 26.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24(6):669–681CrossRefGoogle Scholar
  27. 27.
    Bondi A (1964) J Phys Chem 68(3):441CrossRefGoogle Scholar
  28. 28.
    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107(8):3210–3221CrossRefGoogle Scholar
  29. 29.
    Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100(40):16098–16104CrossRefGoogle Scholar
  30. 30.
    Scalmani G, Frisch MJ (2010) J Chem Phys 132(11):15CrossRefGoogle Scholar
  31. 31.
    Lipparini F, Scalmani G, Mennucci B, Cances E, Caricato M, Frisch MJ (2010) J Chem Phys 133(1):11CrossRefGoogle Scholar
  32. 32.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(18):6378–6396CrossRefGoogle Scholar
  33. 33.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113(14):4538–4543CrossRefGoogle Scholar
  34. 34.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117(19):5179–5197CrossRefGoogle Scholar
  35. 35.
    Cieplak P, Cornell WD, Bayly C, Kollman PA (1995) J Comput Chem 16(11):1357–1377CrossRefGoogle Scholar
  36. 36.
    Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97(40):10269–10280CrossRefGoogle Scholar
  37. 37.
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) J Am Chem Soc 112(16):6127–6129CrossRefGoogle Scholar
  38. 38.
    Onufriev A, Case DA, Bashford D (2002) J Comput Chem 23(14):1297–1304CrossRefGoogle Scholar
  39. 39.
    Knight JL, Brooks CL (2011) J Comput Chem 32(13):2909–2923CrossRefGoogle Scholar
  40. 40.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99(8):2161–2200CrossRefGoogle Scholar
  41. 41.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) J Comput Chem 24(16):1999–2012CrossRefGoogle Scholar
  42. 42.
    Rizzo RC, Aynechi T, Case DA, Kuntz ID (2006) J Chem Theory Comput 2(1):128–139CrossRefGoogle Scholar
  43. 43.
    Jorgensen WL, Ulmschneider JP, Tirado-Rives J (2004) J Phys Chem B 108(41):16264–16270CrossRefGoogle Scholar
  44. 44.
    Thompson JD, Cramer CJ, Truhlar DG (2004) J Phys Chem A 108(31):6532–6542CrossRefGoogle Scholar
  45. 45.
    Thompson JD, Cramer CJ, Truhlar DG (2005) Theor Chem Acc 113(2):107–131CrossRefGoogle Scholar
  46. 46.
    Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1(6):1133–1152CrossRefGoogle Scholar
  47. 47.
    Takano Y, Houk KN (2005) J Chem Theory Comput 1(1):70–77CrossRefGoogle Scholar
  48. 48.
    Kongsted J, Soderhjelm P, Ryde U (2009) J Comput Aided Mol Des 23(7):395–409CrossRefGoogle Scholar
  49. 49.
    Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc, WallingfordGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., WallingfordGoogle Scholar
  51. 51.
    Case DA, Darden TA, Cheatham TE I, Simmerling J, Wang RE, Duke R, Luo RC, Walker W, Zhang KM, Merz BR, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 9. University of California, San FranciscoGoogle Scholar
  52. 52.
    Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Biochemistry (Mosc) 20(4):849–855CrossRefGoogle Scholar
  53. 53.
    Mobley DL, Dill KA, Chodera JD (2008) J Phys Chem B 112(3):938–946CrossRefGoogle Scholar
  54. 54.
    Zhao Y, Truhlar DGJ (2006) Chem Phys 125(19):194101CrossRefGoogle Scholar
  55. 55.
    Becke AD (1993) J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  56. 56.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  57. 57.
    Moller C, Plesset MS (1934) Phys Rev 46(7):0618–0622CrossRefGoogle Scholar
  58. 58.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Proteins Struct Funct Bioinfo 65(3):712–725CrossRefGoogle Scholar
  59. 59.
    Hawkins GD, Cramer CJ, Truhlar DG (1995) Chem Phys Lett 246(1–2):122–129CrossRefGoogle Scholar
  60. 60.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100(51):19824–19839CrossRefGoogle Scholar
  61. 61.
    Onufriev A, Bashford D, Case DA (2000) J Phys Chem B 104(15):3712–3720CrossRefGoogle Scholar
  62. 62.
    Onufriev A, Bashford D, Case DA (2004) Proteins: Struct Funct Bioinfo 55(2):383–394CrossRefGoogle Scholar
  63. 63.
    Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2006) J Chem Theory Comput 3(1):156–169CrossRefGoogle Scholar
  64. 64.
    Shang Y, Nguyen H, Wickstrom L, Okur A, Simmerling C (2011) J Mol Graph Model 29(5):676–684CrossRefGoogle Scholar
  65. 65.
    Tsui V, Case DA (2001) Nucl. Acid. Sci. 56:275–291Google Scholar
  66. 66.
    Onufriev A, Bashford D, Case DA (2004) Proteins Struct Funct Bioinfo 55:383–394CrossRefGoogle Scholar
  67. 67.
    Mobley DL, Dumont E, Chodera JD, Dill KA (2011) J Phys Chem B 115(5):1329–1332CrossRefGoogle Scholar
  68. 68.
    Mobley DL, Liu S, Cerutti DS, Swope WC, Rice JE (2012) J Comput Aided Mol Des 26(5):551–562CrossRefGoogle Scholar
  69. 69.
    Cieplak P, Dupradeau FY, Duan Y, Wang JMJ (2009) Phys: Condens Matter 21(33):333102Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Department of Chemistry and BiochemistryRowan UniversityGlassboroUSA
  3. 3.Department of Biomedical and Translational SciencesRowan UniversityGlassboroUSA

Personalised recommendations