Skip to main content
Log in

Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O) n ]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O) n−1 + H2O) and the two hydrolysis channels resulting the loss of hydronium ([MOH(H2O) n−2]+ + H3O+) and Zundel ([MOH(H2O) n−3]+ + H3O+(H2O)) cations. Minimum energy paths (MEPs) corresponding to those three channels were constructed at the Møller–Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O) n ]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel-cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel-cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high-energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Spears KG, Fehsenfeld FC (1972) J Chem Phys 56:5698

    Article  CAS  Google Scholar 

  2. Blades AT, Jayaweera P, Ikonomou MG, Kerbale P (1990) J Chem Phys 92:5900

    Article  CAS  Google Scholar 

  3. Peschke M, Blades AT, Kerbale P (1998) J Phys Chem A 102:9978

    Article  CAS  Google Scholar 

  4. Pye CC, Rudolph WW (1998) J Phys Chem A 102:9933

    Article  CAS  Google Scholar 

  5. Rodriguez-Cruz SE, Jockush RA, Williams ER (1999) J Am Chem Soc 121:8898

    Article  CAS  Google Scholar 

  6. Barran PE, Walker NR, Stace AJ (2000) J Chem Phys 112:6173

    Article  CAS  Google Scholar 

  7. Shvartsburg AA, Michael Sin KW (2001) J Am Chem Soc 123:10071

    Article  CAS  Google Scholar 

  8. Markham GD, Glusker JP, Bock CW (2002) J Phys Chem B 106:5118

    Article  CAS  Google Scholar 

  9. Wong RL, Paech K, Williams ER (2004) Int J Mass Spectrom 232:59

    Article  CAS  Google Scholar 

  10. Bush MF, Saykally RJ, Williams ER (2007) Chem Phys Chem 8:2245

    Article  CAS  Google Scholar 

  11. Carl DR, Moison RM, Armentrout PB (2007) Int J Mass Spectrom 265:308

    Article  CAS  Google Scholar 

  12. Carl DR, Moison RM, Armentrout PB (2009) J Am Soc Mass Spectrom 20:2312

    Article  CAS  Google Scholar 

  13. Bush MF, O’Brien JT, Prell JS, Wu C-C, Saykally RJ, Williams ER (2009) J Am Chem Soc 131:13270

    Article  CAS  Google Scholar 

  14. Carl DR, Chatterjce BK, Armentrout PB (2010) J Chem Phys 132:044303

    Article  CAS  Google Scholar 

  15. Cabavillas-Vidosa I, Rossa M, Pino GA, Ferrero JC, Cobos CJ (2012) Phys Chem Chem Phys 14:4276

    Article  Google Scholar 

  16. Carl DR, Armentrout PB (2012) J Phys Chem A 116:3802

    Article  CAS  Google Scholar 

  17. Carl DR, Armentrout PB (2013) Chem Phys Chem 14:681

    Article  CAS  Google Scholar 

  18. Cabavillas-Vidosa I, Rossa M, Pino GA, Ferrero JC, Cobos CJ (2013) J Phys Chem A 117:4997

    Article  Google Scholar 

  19. Kaupp M, Schleyer PR (1992) J Phys Chem 96:7316

    Article  CAS  Google Scholar 

  20. Klobukowski M (1992) Can J Chem 70:589

    Article  CAS  Google Scholar 

  21. Bauschlicher CW Jr, Sodupe M, Partridge H (1992) J Chem Phys 96:4453

    Article  CAS  Google Scholar 

  22. Watanabe H, Iwata S, Hashimoto K, Misaizu F, Fuke K (1995) J Am Chem Soc 117:755

    Article  CAS  Google Scholar 

  23. Glendening ED, Feller D (1996) J Chem Phys 100:4790

    Article  CAS  Google Scholar 

  24. Kaufman Katz A, Glusker JP, Beebe SA, Bock CW (1996) J Am Chem Soc 118:5752

    Article  Google Scholar 

  25. Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996) J Chem Phys 100:3488

    Article  CAS  Google Scholar 

  26. Watanabe H, Iwata S (1997) J Phys Chem A 101:487

    Article  CAS  Google Scholar 

  27. Pavlov M, Siegbahn EM, Sandström M (1998) J Phys Chem A 102:219

    Article  CAS  Google Scholar 

  28. Peschke M, Blades AT, Kebarle P (1999) Int J Mass Spectrom 185/186/187:685

  29. Beyer M, Williams ER, Bondybey VE (1999) J Am Chem Soc 121:1565

    Article  CAS  Google Scholar 

  30. Dudev T, Lim C (1999) J Phys Chem A 103:8093

    Article  CAS  Google Scholar 

  31. Merrill GN, Webb SP, Bivin DB (2003) J Phys Chem A 107:386

    Article  CAS  Google Scholar 

  32. Dang LX, Schenter GK, Glezakou VA, Fulton JL (2006) J Phys Chem B110:23644

    Article  Google Scholar 

  33. Sirinivasa Rao J, Dinadayalane TC, Leszczynski J, Narahavi Sastry G (2008) J Phys Chem A 112:12944

    Article  Google Scholar 

  34. Lei XL, Pan BC (2010) J Phys Chem A 114:7595

    Article  CAS  Google Scholar 

  35. Gonzalez JD, Florez E, Romero J, Reyes A, Restrepo A (2013) J Mol Model 19:1763

    Article  CAS  Google Scholar 

  36. Miliordos E, Xantheas SS (2013) Phys Chem Chem Phys. doi:10.1039/c3cp53636j

    Google Scholar 

  37. Baes CFJ, Mesmer RE (1986) The hydrolysis of cations. Krieger Publishing Company, Malabar, FA

    Google Scholar 

  38. Moore CE (1971) Atomic energy levels as derived from the analysis of optical spectra. COM-72-50283, US Department of Commerce, National Technical Information Service, National Bureau of Standards, Washington, DC

  39. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1988) J Phys Chem Ref Data 17(Suppl 1):1

    Google Scholar 

  40. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  41. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  42. Woon DE, Peterson KA, Dunning TH Jr, in preparation, and as implemented in MOLPRO (ref [45])

  43. Koput J, Peterson KA (2002) J Phys Chem A 106:9595

    Article  CAS  Google Scholar 

  44. Lim IS, Stoll H, Schwerdtfeger P (2006) J Chem Phys 124:034107

    Article  Google Scholar 

  45. MOLPRO, version 2010.1, a package of ab initio programs, Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, O’Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A. http://www.molpro.net

  46. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel, HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ã, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford, CT

Download references

Acknowledgments

We acknowledge useful discussions with Drs. Nikolai Petrik and Gregory Kimmel of PNNL. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris S. Xantheas.

Additional information

Dedicated to Professor Thom Dunning and published as part of the special collection of articles celebrating his career upon his retirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miliordos, E., Xantheas, S.S. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters. Theor Chem Acc 133, 1450 (2014). https://doi.org/10.1007/s00214-014-1450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1450-4

Keywords

Navigation