Skip to main content
Log in

Stability of polar ZnO surfaces studied by pair potential method and local energy density method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The polar ZnO surfaces have received wide interests due to their higher activity than the nonpolar facets in catalysis, photo-catalysis and gas sensitivity. However, the theoretical study on the relative stability of the polar ZnO surfaces is still limited. In this work, two different methods were used to calculate the surface energy of the polar ZnO(0001)–Zn and Zn(000-1)–O surfaces. The empirical pair potential method shows that the ZnO(000-1)–O terminal is more stable than the ZnO(0001)–Zn terminal because the polarizability of surface O2− is higher than that of surface Zn2+, which is in good agreement with the experimental results. However, the classic local energy density method predicts a higher stability of the ZnO(0001)–Zn terminal. The overestimation of the stability of the ZnO(0001)–Zn terminal originates from more distribution of the transferred charge to the ZnO(0001)–Zn terminal as the electron acceptor. We propose a hybrid method to fairly redistribute the contribution of the transferred charge to electron donor and electron acceptor and make the same stability trend with the experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strunk J, Kahler K, Xia XY, Muhler M (2009) Surf Sci 603(10–12):1776–1783

    Article  CAS  Google Scholar 

  2. Sadjadi S, Eskandari M (2012) Monatsh Chem 143(4):653–656

    Article  CAS  Google Scholar 

  3. Mclaren A, Valdes-Solis T, Li GQ, Tsang SC (2009) J Am Chem Soc 131(35):12540

    Article  CAS  Google Scholar 

  4. Nassehinia HR, Gholami M, Jafari AJ, Esrafily A (2013) Asian J Chem 25(6):3427–3430

    CAS  Google Scholar 

  5. Driessen MD, Miller TM, Grassian VH (1998) J Mol Catal A Chem 131(1–3):149–156

    Article  CAS  Google Scholar 

  6. Kim J, Yong K (2011) J Phys Chem C 115(15):7218–7224

    Article  CAS  Google Scholar 

  7. Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY (2008) J Phys Chem C 112(31):11859–11864

    Article  CAS  Google Scholar 

  8. Han XG, He HZ, Kuang Q, Zhou X, Zhang XH, Xu T, Xie ZX, Zheng LS (2009) J Phys Chem C 113(2):584–589

    Article  CAS  Google Scholar 

  9. Noguera C, Goniakowski J (2013) Chem Rev 113(6):4073–4105

    Article  CAS  Google Scholar 

  10. Leonard RB, Searcy AW (1971) J Appl Phys 42(10):4047

    Article  CAS  Google Scholar 

  11. Kohl D, Henzler M, Heiland G (1974) Surf Sci 41(2):403–411

    Article  Google Scholar 

  12. Na SH, Park CH (2009) J Korean Phys Soc 54(2):867–872

    CAS  Google Scholar 

  13. Liu PL, Siao YJ (2011) Scr Mater 64(6):483–485

    Article  CAS  Google Scholar 

  14. Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Phys Rev Lett 86(17):3811–3814

    Article  CAS  Google Scholar 

  15. Chetty N, Martin RM (1992) Phys Rev B 45(11):6074–6088

    Article  Google Scholar 

  16. Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) PCCP 14(16):5383–5388

    Article  CAS  Google Scholar 

  17. Yu M, Trinkle DR, Martin RM (2011) Phys Rev B 83(11):115113

    Article  Google Scholar 

  18. Sun XW, Chu YD, Song T, Liu ZJ, Zhang L, Wang XG, Liu YX, Chen QF (2007) Solid State Commun 142(1–2):15–19

    Article  CAS  Google Scholar 

  19. Lewis GV, Catlow CRA (1985) J Phys C Solid State 18(6):1149–1161

    Article  CAS  Google Scholar 

  20. Kubo M, Oumi Y, Takaba H, Chatterjee A, Miyamoto A, Kawasaki M, Yoshimoto M, Koinuma H (2000) Phys Rev B 61(23):16187–16192

    Article  CAS  Google Scholar 

  21. Raymand D, van Duin ACT, Baudin M, Hermansson K (2008) Surf Sci 602(5):1020–1031

    Article  CAS  Google Scholar 

  22. Whitmore L, Sokol AA, Catlow CRA (2002) Surf Sci 498(1–2):135–146

    Article  CAS  Google Scholar 

  23. Gale JD (1997) Faraday Discuss 106:219–232

    Article  CAS  Google Scholar 

  24. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) J Chem Phys 110(17):8254–8282

    Article  CAS  Google Scholar 

  25. Mahadevan TS, Garofalini SH (2007) J Phys Chem B 111(30):8919–8927

    Article  CAS  Google Scholar 

  26. Kresse G, Hafner J (1993) Phys Rev B 48(17):13115–13118

    Article  CAS  Google Scholar 

  27. Perdew JP, Zunger A (1981) Phys Rev B 23(10):5048–5079

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54(23):16533–16539

    Article  CAS  Google Scholar 

  29. Blochl PE (1994) Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  30. Kresse G, Joubert D (1999) Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  31. Sun CQ (2007) Prog Solid State Chem 35(1):1–159

    Article  Google Scholar 

  32. Erhart P, Albe K, Klein A (2006) Phys Rev B 73(20):205203

    Article  Google Scholar 

  33. Yu M, Trinkle DR (2011) J Chem Phys 134(6):064111

    Article  Google Scholar 

  34. Lany S, Zunger A (2010) Phys Rev B 81(11):113201

    Article  Google Scholar 

  35. Alkauskas A, Pasquarello A (2011) Phys Rev B 84(12):125206

    Article  Google Scholar 

  36. Rinke P, Schleife A, Kioupakis E, Janotti A, Rodl C, Bechstedt F, Scheffler M, Van de Walle CG (2012) Phys Rev Lett 108(12):126404

    Article  Google Scholar 

  37. Laudise RA, Ballman AA (1960) J Phys Chem 64(5):688–691

    Article  CAS  Google Scholar 

  38. Noguera C (2000) J Phys Condens Matter 12(31):R367–R410

    Article  CAS  Google Scholar 

  39. Dulub O, Diebold U, Kresse G (2003) Phys Rev Lett 90(1):016102

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Yu, Prof. Trinkel and Prof. Martin for providing the code to calculate the local energy density. This study was supported by the National Natural Science Foundation of China (Grant No. 21103165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keju Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Su, HY. & Li, WX. Stability of polar ZnO surfaces studied by pair potential method and local energy density method. Theor Chem Acc 133, 1427 (2014). https://doi.org/10.1007/s00214-013-1427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1427-8

Keywords

Navigation