Advertisement

Theoretical Chemistry Accounts

, 133:1427 | Cite as

Stability of polar ZnO surfaces studied by pair potential method and local energy density method

  • Keju Sun
  • Hai-Yan Su
  • Wei-Xue Li
Regular Article

Abstract

The polar ZnO surfaces have received wide interests due to their higher activity than the nonpolar facets in catalysis, photo-catalysis and gas sensitivity. However, the theoretical study on the relative stability of the polar ZnO surfaces is still limited. In this work, two different methods were used to calculate the surface energy of the polar ZnO(0001)–Zn and Zn(000-1)–O surfaces. The empirical pair potential method shows that the ZnO(000-1)–O terminal is more stable than the ZnO(0001)–Zn terminal because the polarizability of surface O2− is higher than that of surface Zn2+, which is in good agreement with the experimental results. However, the classic local energy density method predicts a higher stability of the ZnO(0001)–Zn terminal. The overestimation of the stability of the ZnO(0001)–Zn terminal originates from more distribution of the transferred charge to the ZnO(0001)–Zn terminal as the electron acceptor. We propose a hybrid method to fairly redistribute the contribution of the transferred charge to electron donor and electron acceptor and make the same stability trend with the experimental studies.

Keywords

ZnO Polar surfaces The stability Pair potential method Local energy density method 

Notes

Acknowledgments

We are very grateful to Dr. Yu, Prof. Trinkel and Prof. Martin for providing the code to calculate the local energy density. This study was supported by the National Natural Science Foundation of China (Grant No. 21103165).

References

  1. 1.
    Strunk J, Kahler K, Xia XY, Muhler M (2009) Surf Sci 603(10–12):1776–1783CrossRefGoogle Scholar
  2. 2.
    Sadjadi S, Eskandari M (2012) Monatsh Chem 143(4):653–656CrossRefGoogle Scholar
  3. 3.
    Mclaren A, Valdes-Solis T, Li GQ, Tsang SC (2009) J Am Chem Soc 131(35):12540CrossRefGoogle Scholar
  4. 4.
    Nassehinia HR, Gholami M, Jafari AJ, Esrafily A (2013) Asian J Chem 25(6):3427–3430Google Scholar
  5. 5.
    Driessen MD, Miller TM, Grassian VH (1998) J Mol Catal A Chem 131(1–3):149–156CrossRefGoogle Scholar
  6. 6.
    Kim J, Yong K (2011) J Phys Chem C 115(15):7218–7224CrossRefGoogle Scholar
  7. 7.
    Li GR, Hu T, Pan GL, Yan TY, Gao XP, Zhu HY (2008) J Phys Chem C 112(31):11859–11864CrossRefGoogle Scholar
  8. 8.
    Han XG, He HZ, Kuang Q, Zhou X, Zhang XH, Xu T, Xie ZX, Zheng LS (2009) J Phys Chem C 113(2):584–589CrossRefGoogle Scholar
  9. 9.
    Noguera C, Goniakowski J (2013) Chem Rev 113(6):4073–4105CrossRefGoogle Scholar
  10. 10.
    Leonard RB, Searcy AW (1971) J Appl Phys 42(10):4047CrossRefGoogle Scholar
  11. 11.
    Kohl D, Henzler M, Heiland G (1974) Surf Sci 41(2):403–411CrossRefGoogle Scholar
  12. 12.
    Na SH, Park CH (2009) J Korean Phys Soc 54(2):867–872Google Scholar
  13. 13.
    Liu PL, Siao YJ (2011) Scr Mater 64(6):483–485CrossRefGoogle Scholar
  14. 14.
    Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Phys Rev Lett 86(17):3811–3814CrossRefGoogle Scholar
  15. 15.
    Chetty N, Martin RM (1992) Phys Rev B 45(11):6074–6088CrossRefGoogle Scholar
  16. 16.
    Jacquemin D, Le Bahers T, Adamo C, Ciofini I (2012) PCCP 14(16):5383–5388CrossRefGoogle Scholar
  17. 17.
    Yu M, Trinkle DR, Martin RM (2011) Phys Rev B 83(11):115113CrossRefGoogle Scholar
  18. 18.
    Sun XW, Chu YD, Song T, Liu ZJ, Zhang L, Wang XG, Liu YX, Chen QF (2007) Solid State Commun 142(1–2):15–19CrossRefGoogle Scholar
  19. 19.
    Lewis GV, Catlow CRA (1985) J Phys C Solid State 18(6):1149–1161CrossRefGoogle Scholar
  20. 20.
    Kubo M, Oumi Y, Takaba H, Chatterjee A, Miyamoto A, Kawasaki M, Yoshimoto M, Koinuma H (2000) Phys Rev B 61(23):16187–16192CrossRefGoogle Scholar
  21. 21.
    Raymand D, van Duin ACT, Baudin M, Hermansson K (2008) Surf Sci 602(5):1020–1031CrossRefGoogle Scholar
  22. 22.
    Whitmore L, Sokol AA, Catlow CRA (2002) Surf Sci 498(1–2):135–146CrossRefGoogle Scholar
  23. 23.
    Gale JD (1997) Faraday Discuss 106:219–232CrossRefGoogle Scholar
  24. 24.
    Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) J Chem Phys 110(17):8254–8282CrossRefGoogle Scholar
  25. 25.
    Mahadevan TS, Garofalini SH (2007) J Phys Chem B 111(30):8919–8927CrossRefGoogle Scholar
  26. 26.
    Kresse G, Hafner J (1993) Phys Rev B 48(17):13115–13118CrossRefGoogle Scholar
  27. 27.
    Perdew JP, Zunger A (1981) Phys Rev B 23(10):5048–5079CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54(23):16533–16539CrossRefGoogle Scholar
  29. 29.
    Blochl PE (1994) Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  31. 31.
    Sun CQ (2007) Prog Solid State Chem 35(1):1–159CrossRefGoogle Scholar
  32. 32.
    Erhart P, Albe K, Klein A (2006) Phys Rev B 73(20):205203CrossRefGoogle Scholar
  33. 33.
    Yu M, Trinkle DR (2011) J Chem Phys 134(6):064111CrossRefGoogle Scholar
  34. 34.
    Lany S, Zunger A (2010) Phys Rev B 81(11):113201CrossRefGoogle Scholar
  35. 35.
    Alkauskas A, Pasquarello A (2011) Phys Rev B 84(12):125206CrossRefGoogle Scholar
  36. 36.
    Rinke P, Schleife A, Kioupakis E, Janotti A, Rodl C, Bechstedt F, Scheffler M, Van de Walle CG (2012) Phys Rev Lett 108(12):126404CrossRefGoogle Scholar
  37. 37.
    Laudise RA, Ballman AA (1960) J Phys Chem 64(5):688–691CrossRefGoogle Scholar
  38. 38.
    Noguera C (2000) J Phys Condens Matter 12(31):R367–R410CrossRefGoogle Scholar
  39. 39.
    Dulub O, Diebold U, Kresse G (2003) Phys Rev Lett 90(1):016102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Catalysis, and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations