Skip to main content
Log in

Theoretical studies on the structures and electronic spectra of carbon chains C n N (n = 3–12)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A theoretical study of the linear nitrogen-terminated carbon chains C n N (n = 3–12) is carried out with density functional theories and ab initio methods. All species in the ground state are fully optimized with the B3LYP, CAM-B3LYP, and RCCSD(T) calculations. The present results reveal that the carbon radicals under study possess stable structures with the X 2Σ+ ground-state symmetry for C n N (n = 3, 5) or X 2Π for the rest members in the series. According to the trends of odd/even alternation in energy differences and incremental binding energies, it is clear that the n-odd C n N chains are relatively more stable than n-even ones. Furthermore, the electronic spectra of C n N (n = 3–12) are investigated by means of CASPT2 method. The predicted vertical excitation energies from the ground state to the low-lying excited states basically agree well with the available experimental observations. In addition, by performing curve fittings, the vertical excitation energies of the transitions from the ground states (X 2Σ+ or X 2Π) to the low-lying excited state 22Π for the odd members are found to obey a nonlinear ΔEn relationship as a function of chain size, matching the experimental findings well. Moreover, the strongest absorption band for the even series shows a nonlinear trend of biexponential decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merrill PW (1934) Publ Astron Soc Pac 46:206–207

    Article  Google Scholar 

  2. Merrill PW (1936) Publ Astron Soc Pac 48:179–180

    Article  Google Scholar 

  3. Merrill PW, Wilson OC (1938) Ap J 87:9–23

    Article  CAS  Google Scholar 

  4. Rice CA, Maier JP (2013) J Phys Chem A 117:5559–5566

    Article  CAS  Google Scholar 

  5. Jochnowitz EB, Maier JP (2008) Mol Phys 106:2093–2106

    Article  CAS  Google Scholar 

  6. Jochnowitz EB, Maier JP (2008) Proc Int Astron Union 251:395–402

    Article  Google Scholar 

  7. Jochnowitz EB, Maier JP (2008) Ann Rev Phys Chem 59:519–544

    Article  CAS  Google Scholar 

  8. Caselli P, Hasegawa TI, Herbst E (1993) Astrophys J 408:548–558

    Article  CAS  Google Scholar 

  9. Hasegawa TI, Herbst E (1993) Mon Not R Astron Soc 261:83–102

    Article  CAS  Google Scholar 

  10. Eichelberger B, Snow TP, Barckholtz C, Bierbaum VM (2007) Astrophys J 667:1283–1289

    Article  CAS  Google Scholar 

  11. Redman MP, Viti S, Cau P, Williams DA (2003) Mon Not R Astron Soc 345:1291–1296

    Article  CAS  Google Scholar 

  12. Adams WS (1941) Astrophys J 93:11–23

    Article  CAS  Google Scholar 

  13. Agúndez M, Fonfria JP, Cernicharo J, Pardo JR, Guélin M (2008) Astron Astrophys 479:493–501

    Article  Google Scholar 

  14. Belau L, Wheeler SE, Ticknor BW, Ahmed M, Leone SR, Allen WD, Schaefer HF, Duncan MA (2007) J Am Chem Soc 129:10229–10243

    Article  CAS  Google Scholar 

  15. McKellar A (1940) Publ Astron Soc Pacific 52:187–192

    Article  CAS  Google Scholar 

  16. Guélin M, Thaddeus P (1977) Astrophys J Lett 212:L81–L86

    Article  Google Scholar 

  17. Friberg P, Hjalmarson Å, Irvine WM, Guélin M (1980) Astrophys J 241:L99–L103

    Article  CAS  Google Scholar 

  18. Gúelin M, Neininger N, Cernicharo J (1998) J Astron Astrophys 335:L1–L4

    Google Scholar 

  19. Pauzat F, Ellinger Y, Mclean AD (1991) Astrophys J 369:L13–L16

    Article  CAS  Google Scholar 

  20. Botschwina P (1996) Chem Phys Lett 259:627–634

    Article  CAS  Google Scholar 

  21. Mebel AM, Kaiser RI (2002) Astrophys J 564:787–791

    Article  CAS  Google Scholar 

  22. Li HY, Cheng WC, Liu YL, Sun BJ, Huang CY, Chen KT, Tang MS, Kaiser RI, Chang AHH (2006) J Chem Phys 124:044307–044325

    Article  CAS  Google Scholar 

  23. Botschwina P (2003) Phys Chem Chem Phys 5:3337–3348

    Article  CAS  Google Scholar 

  24. McCarthy MC, Fuchs GW, Kucera J, Winnewisser G, Thaddeus P (2003) J Chem Phys 118:3549–3557

    Article  CAS  Google Scholar 

  25. Kostko O, Zhou J, Sun BJ, Lie JS, Chang AHH, Kaiser RI, Ahmed M (2010) Astrophys J 717:674–682

    Article  CAS  Google Scholar 

  26. Gottlieb CA, Gottlieb EW, Thaddeus P, Kawamura H (1983) Astrophys J 275:916–921

    Article  CAS  Google Scholar 

  27. Kasai Y, Sumiyoshi Y, Endo Y, Kawaguchi K (1997) Astrophys J 477:L65–L67

    Article  CAS  Google Scholar 

  28. Grutter M, Wyss M, Maier JP (1999) J Chem Phys 110:1492–1496

    Article  CAS  Google Scholar 

  29. Nagarajan R, Maier JP (2010) Int Rev Phys Chem 29:521–554

    Article  CAS  Google Scholar 

  30. McCarthy MC, Gottlieb CA, Thaddeus P, Horn M, Botschwina P (1995) J Chem Phys 103:7820–7827

    Article  CAS  Google Scholar 

  31. Ding YH, Liu JL, Huang XR, Li ZS, Sun CC (2001) J Chem Phys 114:5170–5179

    Article  CAS  Google Scholar 

  32. Chuchev K, BelBruno JJ (2002) J Phys Chem A 106:4240–4244

    Article  CAS  Google Scholar 

  33. Botschwina P, Horn M, Markey K, Oswald R (1997) Mol Phys 92:381–392

    Article  CAS  Google Scholar 

  34. Belbruno JJ, Tang ZC, Smith R, Hobday S (2001) Mol Phys 99:957–967

    Article  CAS  Google Scholar 

  35. Dunning TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  36. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975

    Google Scholar 

  37. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

    Google Scholar 

  38. Knowles PJ, Hampel C, Werner H-J (1993) J Chem Phys 99:5219; (2000) J Chem Phys 112:3106 (Erratum)

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Stephens PJ, Devlin FJ, Chabalowski CF, Frich MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  41. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  42. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  43. Celani P, Werner HJ (2000) J Chem Phys 112:5546–5557

    Article  CAS  Google Scholar 

  44. Andersson K, Malmqvist PÅ, Roos BO, Sadlej AJ, Wolinski K (1990) J Phys Chem 94:5483–5488

    Article  CAS  Google Scholar 

  45. Andersson K, Malmqvist PÅ, Roos BO (1992) J Chem Phys 96:1218–1226

    Article  CAS  Google Scholar 

  46. Werner HJ, Knowles PJ (1985) J Chem Phys 82:5053–5063

    Article  CAS  Google Scholar 

  47. Knowles PJ, Werner HJ (1985) Chem Phys Lett 115:259–267

    Article  CAS  Google Scholar 

  48. Roos BO (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry, vol 2. Wiley, New York, p 399

    Google Scholar 

  49. Peyerimhoff SD (1998) In: Schleyer PVR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, Schreiner PR (eds) The encyclopedia of computational chemistry, vol 4. Wiley, New York, p 2654

    Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT

  51. Werner H-J, Knowles PJ (2009) Molpro: a package of ab initio programs (see http://www.molpro.net for more details)

  52. Zhang YX, Ning P, Zhang JL (2013) Spectrochim Acta A 101:283–293

    Article  CAS  Google Scholar 

  53. Guo XG, Zhang JL, Zhao Y (2012) J Comput Chem 33:93–102

    Article  Google Scholar 

  54. Peach MJG, Tellgren EI, Salek P, Helgaker T, Tozer DJ (2007) J Phys Chem A 111:11930–11935

    Article  CAS  Google Scholar 

  55. Puzzarini C, Stanton JF, Gauss J (2010) Int Rev Phys Chem 29:273–367

    Article  CAS  Google Scholar 

  56. Botschwina P, Horn M, Flügge J, Seeger S (1993) J Chem Soc Faraday Trans 89:2219–2230

    Article  CAS  Google Scholar 

  57. Zhang YX, Wang L, Li YY, Zhang JL (2013) J Chem Phys 1384806186:1–9

    Google Scholar 

  58. Zhang YX, Guo J, Zhang JL (2012) Int J Mass Spectrom 309:56–62

    Article  CAS  Google Scholar 

  59. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods. Gaussian Inc., Pittsburgh, PA

    Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University for providing computational resources. This work was supported by the National Natural Science Foundation of China (21003036), the Foundation for University Key Teachers from the He’nan Educational Committee, Science Foundation of He’nan Educational Committee (2008A150005 and 2011B150003), Science Foundation of Henan University (SBGJ090507), and Doctor Foundation of Henan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglai Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Li, Y., Wang, L. et al. Theoretical studies on the structures and electronic spectra of carbon chains C n N (n = 3–12). Theor Chem Acc 133, 1420 (2014). https://doi.org/10.1007/s00214-013-1420-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1420-2

Keywords

Navigation