Skip to main content

MULTIMODE calculations of the infrared spectra of H +7 and D +7 using ab initio potential energy and dipole moment surfaces

Abstract

We present a new ab initio potential energy surface (PES) and a dipole moment surface (DMS) for H +7 in the bound region. The PES is a linear least-squares fit to 42,525 ab initio points whose energies were computed with CCSD(T)-F12b/cc-pVQZ-F12 theory, and the DMS is a fit to dipole moments calculated at MP2 level of theory. The PES and DMS describe the bound region of H +7 precisely. MULTIMODE (MM) calculations of the infrared spectra of H +7 and D +7 were performed using the new PES and DMS. These calculations were carried out at the lowest three stationary points using the single-reference version of MM, and only the five high-frequency modes were considered. The calculated spectra agree well with the recent experimental predissociation action spectra.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Duley WW (1996) Astrophys J 471:L57

    Article  CAS  Google Scholar 

  2. Petrie S, Bohme DK (2007) Mass Spectrom Rev 26:258

    Article  CAS  Google Scholar 

  3. Snow TP, Bierbaum VM (2008) Annu Rev Anal Chem 1:229

    Article  CAS  Google Scholar 

  4. Geballe TR, Oka T (1996) Nature 384:334

    Article  CAS  Google Scholar 

  5. Xie Z, Braams BJ, Bowman JM (2005) J Chem Phys 122:224307

    Article  Google Scholar 

  6. Aguado A, Barragán P, Prosmiti R, and Delgado-Barrio G, Villarreal P, Roncero O (2010) J Chem Phys 133:024306

    Article  CAS  Google Scholar 

  7. Cheng TC, Bandyopadyay B, Wang Y, Carter S, Braams BJ, Bowman JM, Duncan MA (2010) J Phys Chem Lett 1:758

    Article  CAS  Google Scholar 

  8. Cheng TC, Jiang L, Asmis KR, Wang Y, Bowman JM, Ricks AM, Duncan MA (2012) J Phys Chem Lett 3:3160

    Article  CAS  Google Scholar 

  9. Lin Z, McCoy AB (2012) J Phys Chem Lett 3:3690

    Article  CAS  Google Scholar 

  10. Lin Z, McCoy AB (2013). J Phys Chem A. doi:10.1021/jp4014652

  11. Pérez de Tudela R, Barragán P, Prosmiti R, Villarreal P, Delgado-Barrio G (2011) J Phys Chem A 115:2483

    Article  Google Scholar 

  12. Barragán P, Pérez de Tudela R, Prosmiti R, Villarreal P, Delgado-Barrio G (2011) Phys Scr 84:028109

    Article  Google Scholar 

  13. Song H, Lee SY, Yang M, Lu Y (2013) J Chem Phys 138:124309

    Article  Google Scholar 

  14. Sanz-Sanz C, Roncero O, Valdés A, Prosmiti R, Delgado-Barrio G, Villarreal P, Barragán P, Aguado A (2011) Phys Rev A 84:060502

    Article  Google Scholar 

  15. Aguado A, Sanz-Sanz C, Villarreal P, Roncero O (2012) Phys Rev A 85:032514

    Article  Google Scholar 

  16. Valdés A, Barragán P, Sanz-Sanz C, Prosmiti R, Villarreal P, Delgado-Barrio G (2012a) Theor Chem Acc 131:1210

    Article  Google Scholar 

  17. Valdés A, Prosmiti R, Delgado-Barrio G (2012b) J Chem Phys 136:104302

    Article  Google Scholar 

  18. Valdés A, Prosmiti R, Delgado-Barrio G (2012c) J Chem Phys 137:214308

    Article  Google Scholar 

  19. Valdés A, Prosmiti R (2013) J Phys Chem A. doi:10.1021/jp3121947

  20. Okumura M, Yeh LI, Lee YT (1985) J Chem Phys 83:3705

    Article  CAS  Google Scholar 

  21. Okumura M, Yeh LI, Lee YT (1988) J Chem Phys 88:79

    Article  CAS  Google Scholar 

  22. Young JW, Cheng TC, Bandyopadhyay B, Duncan MA (2013) J Phys Chem A 117:6984

    Article  CAS  Google Scholar 

  23. Barbatti M, Nascimento MAC (2003) J Chem Phys 119:5444

    Article  CAS  Google Scholar 

  24. Barragán P, Prosmiti R, Wang Y, Bowman JM (2012) J Chem Phys 136:224302

    Article  Google Scholar 

  25. Barragán P, Pérez de Tudela R, Qu C, Prosmiti R, Bowman JM (2013) J Chem Phys 139:024308

    Article  Google Scholar 

  26. Bennett SL, Field FH (1972) J Am Chem Soc 94:8669

    Article  CAS  Google Scholar 

  27. Hiraoka K, Kebarle P (1975) J Chem Phys 62:2267

    Article  CAS  Google Scholar 

  28. Beuhler RJ, Ehrenson S, Friedman L (1983) J Chem Phys 79:5982

    Article  CAS  Google Scholar 

  29. Hiraoka K (1987) J Chem Phys 87:4048

    Article  CAS  Google Scholar 

  30. Prosmiti R, Villarreal P, Delgado-Barrio G (2003) J Phys Chem A 107:4768

    Article  CAS  Google Scholar 

  31. Adler TB, Knizia G, Werner HJ (2007) J Chem Phys 127:221106

    Article  Google Scholar 

  32. Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104

    Article  Google Scholar 

  33. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  34. Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102

    Article  Google Scholar 

  35. Yousaf KE, Peterson KA (2009) J Chem Phys 129:184108

    Article  Google Scholar 

  36. Werner HJ, Knowles PJ, Knizia G et al (2010) MOLPRO, version 2010.1, a package of ab initio programs. http://www.molpro.net

  37. Braams BJ, Bowman JM (2009) Int Rev Phys Chem 28:577

    Article  CAS  Google Scholar 

  38. Wang Y, Huang X, Shepler BC, Braams BJ, Bowman JM (2011) J Chem Phys 134:094509

    Article  Google Scholar 

  39. Bowman JM, Carter S, Huang X (2003) Int Rev Phys Chem 22:533

    Article  CAS  Google Scholar 

  40. Watson JKG (1968) Mol Phys 15:479

    Article  CAS  Google Scholar 

  41. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    Article  CAS  Google Scholar 

  42. Wang Y, Bowman JM (2011) J Chem Phys 134:154510

    Article  Google Scholar 

  43. Liu H, Wang YM, Bowman JM (2012) J Phys Chem Lett 3:3671

    Article  CAS  Google Scholar 

  44. Kamarchik E, Bowman JM (2013) J Phys Chem Lett 4:2964

    Article  CAS  Google Scholar 

  45. Bowman JM (1978) J Chem Phys 68:608

    Article  CAS  Google Scholar 

  46. Bowman JM, Christoffel K, Tobin F (1979) J Phys Chem 83:905

    Article  CAS  Google Scholar 

  47. Christoffel KM, Bowman JM (1982) Chem Phys Lett 85:220

    Article  CAS  Google Scholar 

  48. Burcl R, Carter S, Handy NC (2003) Chem Phys Lett 380:237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.Q. and J.M.B. thank NASA for financial support through Grant No. 370NNX12AF42G from the NASA Astrophysics Research and Analysis program. R.P. thanks the Centro de Calculo (IFF-CSIC) and SGAI (CSIC) for allocation of computer time. Supports from MICINN, Spain, Grant No. FIS2011-29596-C02-01, Consolider-Ingenio 2010 Programme CSD2009-00038 (MICINN), and COST Action CM1002 (CODECS) are gratefully acknowledged by R.P. We thank Mike Duncan for sending his experimental spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel M. Bowman.

Additional information

Dedicated to Professor Thom Dunning and published as part of the special collection of articles celebrating his career upon his retirement.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (24 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qu, C., Prosmiti, R. & Bowman, J.M. MULTIMODE calculations of the infrared spectra of H +7 and D +7 using ab initio potential energy and dipole moment surfaces. Theor Chem Acc 132, 1413 (2013). https://doi.org/10.1007/s00214-013-1413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1413-1

Keywords

  • H +7
  • Ab initio potential energy surface
  • Large-amplitude motion
  • MULTIMODE
  • Infrared spectrum