Skip to main content
Log in

Polymatic: a generalized simulated polymerization algorithm for amorphous polymers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work presents a generalized structure generation methodology for amorphous polymers by a simulated polymerization technique and 21-step molecular dynamics equilibration, which is particularly effective for high-T g polymers. The essential framework and parameters of the techniques and algorithms are described in detail, and example input scripts are provided for use with the freely available Polymatic simulated polymerization code and LAMMPS molecular dynamics package. The capabilities of the methods are examined through application to six linear, glassy polymers ranging in functionality, polarity, and rigidity. Validation of the methodology is provided by comparison of the simulations and experiments for a variety of structural, adsorption, and thermal properties, all of which showed excellent agreement with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Haward RN, Young RJ (eds.) (1997) The physics of glassy polymers, 2nd edn. Chapman & Hall, London

    Google Scholar 

  2. Tant MR, Hill AJ (eds.) (1999) Structure and properties of glassy polymers. American Chemical Society, Washington, DC

    Google Scholar 

  3. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Pure Appl Chem 66:1739–1758

    Article  CAS  Google Scholar 

  4. Sing K (2001) Colloids Surf A 187–188:3–9

    Article  Google Scholar 

  5. Gelb LD (2009) MRS Bull 34:592–601

    Article  CAS  Google Scholar 

  6. Brunauer S, Emmett P, Teller E (1938) J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  7. Lastoskie C, Gubbins KE, Quirke N (1993) J Phys Chem 97:4786–4796

    Article  CAS  Google Scholar 

  8. Gidley DW, Peng HG, Vallery RS (2006) Annu Rev Mater Res 36:49–79

    Article  CAS  Google Scholar 

  9. Theodorou DN (2007) Chem Eng Sci 62:5697–5714

    Article  CAS  Google Scholar 

  10. Barrat JL, Baschnagel J, Lyulin A (2010) Soft Matter 6:3430–3446

    Article  CAS  Google Scholar 

  11. Theodorou DN, Suter UW (1985) Macromolecules 18:1467–1478

    Article  CAS  Google Scholar 

  12. Flory PJ (1974) Macromolecules 7:381–392

    Article  CAS  Google Scholar 

  13. Charati SG, Stern SA (1998) Macromolecules 31:5529–5535

    Article  CAS  Google Scholar 

  14. Hofmann D, Fritz L, Ulbrich J, Schepers C, Böhning M (2000) Macromol Theory Simul 9:293–327

    Article  CAS  Google Scholar 

  15. Hofmann D, Fritz L, Ulbrich J, Paul D (2000) Comput Theor Polym Sci 10:419–436

    Article  CAS  Google Scholar 

  16. Karayiannis NC, Mavrantzas VG, Theodorou DN (2004) Macromolecules 37:2978–2995

    Article  CAS  Google Scholar 

  17. Fang W, Zhang L, Jiang J (2010) Mol Sim 36:992–1003

    Article  CAS  Google Scholar 

  18. Siepmann JI, Frenkel D (1992) Mol Phys 75:59–70

    Article  CAS  Google Scholar 

  19. Dodd L, Boone T, Theodorou D (1993) Mol Phys 78:961–996

    Article  CAS  Google Scholar 

  20. Mavrantzas VG, Boone TD, Zervopoulou E, Theodorou DN (1999) Macromolecules 32:5072–5096

    Article  CAS  Google Scholar 

  21. Santos S, Suter UW, Muller M, Nievergelt J (2001) J Chem Phys 114:9772–9779

    Article  CAS  Google Scholar 

  22. Peristeras LD, Rissanou AN, Economou IG, Theodorou DN (2007) Macromolecules 40:2904–2914

    Article  CAS  Google Scholar 

  23. Müller-Plathe F (2002) Chem Phys Chem 3:754–769

    Article  Google Scholar 

  24. Curcó D, Alemáan C (2007) J Comput Chem 28:1929–1935

    Article  Google Scholar 

  25. Peter C, Kremer K (2009) Soft Matter 5:4357–4366

    Article  CAS  Google Scholar 

  26. Wu C, Xu W (2006) Polymer 47:6004–6009

    Article  CAS  Google Scholar 

  27. Varshney V, Patnaik SS, Roy AK, Farmer BL (2008) Macromolecules 41:6837–6842

    Article  CAS  Google Scholar 

  28. Liu JW, Mackay ME, Duxbury PM (2009) Macromolecules 42:8534–8542

    Article  CAS  Google Scholar 

  29. Farah K, Karimi-Varzaneh HA, Müller-Plathe F, Böhm MC (2010) J Phys Chem B 114:13656–13666

    Article  CAS  Google Scholar 

  30. Liu H, Li M, Lu ZY, Zhang ZG, Sun CC, Cui T (2011) Macromolecules 44:8650–8660

    Article  CAS  Google Scholar 

  31. Abbott LJ, Colina CM (2011) Macromolecules 44:4511–4519

    Article  CAS  Google Scholar 

  32. Ikeno T, Tsubuku M, Katagiri M, Tsujimoto T (2011) Chem Lett 40:309–311

    Article  CAS  Google Scholar 

  33. Khare KS, Khare R (2012) Macromol Theory Simul 21:322–327

    Article  CAS  Google Scholar 

  34. Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU (2012) Macromolecules 45:4876–4885

    Article  CAS  Google Scholar 

  35. Brenner D (1990) Phys Rev B 42:9458–9471

    Article  CAS  Google Scholar 

  36. Marks N (2000) Phys Rev B 63:1–7

    Article  Google Scholar 

  37. Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phys 112:6472–6486

    Article  CAS  Google Scholar 

  38. Van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) J Phys Chem A 105:9396–9409

    Article  CAS  Google Scholar 

  39. Larsen GS, Lin P, Hart KE, Colina CM (2011) Macromolecules 44:6944–6951

    Article  CAS  Google Scholar 

  40. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) J Comput Chem 30:2157–2164

    Article  Google Scholar 

  41. Martínez L, Martínez JM, Birgin E (2011) Packmol. http://www.ime.unicamp.br/martinez/packmol

  42. Martin MG (2010) Monte Carlo for complex chemical systems (MCCCS) towhee, version 6.2.12. http://towhee.sourceforge.net

  43. Accelrys Software Inc (2007) Materials studio, release 6.0. Accelrys Software Inc, San Diego, CA

    Google Scholar 

  44. Abbott LJ (2012) Polymatic, Version 1.0. http://www.matse.psu.edu/colinagroup/polymatic

  45. McKeown NB, Budd PM (2010) Macromolecules 43:5163–5176

    Article  CAS  Google Scholar 

  46. Heuchel M, Fritsch D, Budd PM, McKeown NB, Hofmann D (2008) J Memb Sci 318:84–99

    Article  CAS  Google Scholar 

  47. Li C, Strachan A (2010) Polymer 51:6058–6070

    Article  CAS  Google Scholar 

  48. Izumi A, Nakao T, Shibayama M (2012) Soft Matter 8:5283–5292

    Article  CAS  Google Scholar 

  49. Plimpton S (1995) J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  50. Plimpton S, Thompson A, Crozier P (2012) Large-scale atomic/molecular massively parallel simulator (LAMMPS). http://lammps.sandia.gov/

  51. Hart KE, Abbott LJ, Colina CM (2013) Analysis of force fields and BET theory for polymers of intrinsic microporosity. Mol Sim. doi:10.1080/08927022.2012.733945

  52. Abbott LJ, McDermott AG, Del Regno A, Taylor RGD, Bezzu CG, Msayib KJ, McKeown NB, Siperstein FR, Runt J, Colina CM (2013) J Phys Chem B 117:355–364

    Google Scholar 

  53. Sun H (1994) J Comput Chem 15:752–768

    Article  CAS  Google Scholar 

  54. Martin MG, Siepmann JI (1998) J Phys Chem B 102:2569–2577

    Article  CAS  Google Scholar 

  55. Martin MG, Siepmann JI (1999) J Phys Chem B 103:4508–4517

    Article  CAS  Google Scholar 

  56. Wick CD, Martin MG, Siepmann JI (2000) J Phys Chem B 104:8008–8016

    Article  CAS  Google Scholar 

  57. Wick CD, Stubbs JM, Rai N, Siepmann JI (2005) J Phys Chem B 109:18974–18982

    Article  CAS  Google Scholar 

  58. Rai N, Siepmann JI (2007) J Phys Chem B 111:10790–10799

    Article  CAS  Google Scholar 

  59. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  60. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W,Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford, CT

  62. Hockney RW, Eastwood JW (1988) Computer simulation using particles. Taylor & Francis, New York

    Book  Google Scholar 

  63. Plimpton S, Pollock R, Stevens M (1997) Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulations. In: Proceedings of the eighth SIAM conference on parallel processing for scientific computing

  64. Kholodovych V, Welsh WJ (2007) Densities of amorphous and crystalline polymers. In: Mark JE (ed.) Physical properties of polymers handbook, 2nd edn. Springer, New York

    Google Scholar 

  65. Tsyurupa M, Davankov V (2006) React Funct Polym 66:768–779

    Article  CAS  Google Scholar 

  66. Connolly ML (1983) J Appl Crystallogr 16:548–558

    Article  CAS  Google Scholar 

  67. Gelb LD, Gubbins KE (1998) Langmuir 14:2097–2111

    Article  CAS  Google Scholar 

  68. Sarkisov L, Harrison A (2011) Mol Sim 37:1248–1257

    Article  CAS  Google Scholar 

  69. Budd PM, McKeown NB, Fritsch D (2006) Macromol Symp 245–246:403–405

    Article  Google Scholar 

  70. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (eds.) (2005) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  71. Mark JE (ed.) (2009) Polymer data handbook, 2nd edn. Oxford University Press, New York

    Google Scholar 

  72. Quach A, Simha R (1971) J Appl Phys 42:4592–4606

    Article  CAS  Google Scholar 

  73. Allen MP, Tildesley DJ (2007) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  74. Paul W, Smith GD (2004) Rep Prog Phys 67:1117–1185

    Article  CAS  Google Scholar 

  75. Arbe A, Alvarez F, Colmenero J (2012) Soft Matter 8:8257–8270

    Article  CAS  Google Scholar 

  76. Mondello M, Yang HJ, Furuya H, Roe RJ (1994) Macromolecules 27:3566–3574

    Article  CAS  Google Scholar 

  77. Ayyagari C, Bedrov D, Smith GD (2000) Macromolecules 33:6194–6199

    Article  CAS  Google Scholar 

  78. Eilhard J, Zirkel A, Tschop W, Hahn O, Kremer K, Scharpf O, Richter D, Buchenau U (1999) J Chem Phys 110:1819–1830

    Article  CAS  Google Scholar 

  79. McDermott AG, Larsen GS, Budd PM, Colina CM, Runt J (2011) Macromolecules 44:14–16

    Article  CAS  Google Scholar 

  80. Fang W, Zhang L, Jiang J (2011) J Phys Chem C 115:14123–14130

    Article  CAS  Google Scholar 

  81. Le Roux S, Petkov V (2010) J Appl Crystallogr 43:181–185

    Article  CAS  Google Scholar 

  82. Le Roux S, Petkov V (2012) Interactive structure analysis of amorphous and crystalline systems (ISAACS), version 2.5. http://isaacs.sourceforge.net

  83. LeGrand DG, Bendler JT (eds.) (2000) Handbook of polycarbonate science and technology. Marcel Dekker, New York

    Google Scholar 

  84. Wang Y, Jiang L, Matsuura T, Chung TS, Goh SH (2008) J Membr Sci 318:217–226

    Article  CAS  Google Scholar 

  85. Du N, Robertson GP, Song J, Pinnau I, Thomas S, Guiver MD (2008) Macromolecules 41:9656–9662

    Article  CAS  Google Scholar 

  86. Neimark AV, Lin Y, Ravikovitch PI, Thommes M (2009) Carbon 47:1617–1628

    Article  CAS  Google Scholar 

  87. Horváth G, Kawazoe K (1983) J Chem Eng Jpn 16:470–475

    Article  Google Scholar 

  88. Rouquerol J, Llewellyn P (2007) Stud Surf Sci Catal 160:49–56

    Article  CAS  Google Scholar 

  89. Walton KS, Snurr RQ (2007) J Am Chem Soc 129:8552–8556

    Article  CAS  Google Scholar 

  90. Bae YS, Yazaydin aO, Snurr RQ (2010) Langmuir 26:5475–5483

    Article  CAS  Google Scholar 

  91. Norman GE, Filinov VS (1969) High Temp 7:216–222

    Google Scholar 

  92. Lüscher M (1994) Comput Phys Commun 79:100–110

    Article  Google Scholar 

  93. James F (1994) Comput Phys Commun 79:111–114

    Article  Google Scholar 

  94. Potoff JJ, Siepmann JI (2001) AIChE J 47:1676–1682

    Article  CAS  Google Scholar 

  95. Larsen GS (2011) Simulations and experiments on gas adsorption in novel microporous polymers. Ph.D Dissertation, The Pennsylvania State University

  96. Düren T, Millange F, Ferey G, Walton K, Snurr R (2007) J Phys Chem C 111:15350–15356

    Article  Google Scholar 

  97. McKeown NB, Budd PM (2006) Chem Soc Rev 35:675–683

    Article  CAS  Google Scholar 

  98. Weber J, Su Q, Antonietti M, Thomas A (2007) Macromol Rapid Commun 28:1871–1876

    Article  CAS  Google Scholar 

  99. Lyulin AV, Balabaev NK, Michels MAJ (2003) Macromolecules 36:8574–8575

    Article  CAS  Google Scholar 

  100. Soldera A, Metatla N (2006) Phys Rev E 74:1–6

    Article  Google Scholar 

  101. Staiger CL, Pas SJ, Hill AJ, Cornelius CJ (2008) Chem Mater 20:2606–2608

    Article  CAS  Google Scholar 

  102. Ahn J, Chung WJ, Pinnau I, Song J, Du N, Robertson GP, Guiver MD (2010) J Membr Sci 346:280–287

    Article  CAS  Google Scholar 

  103. Greiner R, Schwarzl FR (1984) Rheol Acta 23:378–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation (DMR-0908781) for funding. Computational resources were provided by the Materials Simulation Center of the Materials Research Institute, the Research Computing and Cyberinfrastructure unit of Penn State Information Technology Services, and the Penn State Center for Nanoscale Science. Additional computational resources were provided by instrumentation funded by the National Science Foundation (OCI-0821527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Coray M. Colina.

Additional information

Published as part of the special collection of articles derived from the conference: Foundations of Molecular Modeling and Simulation 2012.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (2268 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbott, L.J., Hart, K.E. & Colina, C.M. Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theor Chem Acc 132, 1334 (2013). https://doi.org/10.1007/s00214-013-1334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1334-z

Keywords

Navigation