Skip to main content
Log in

Electronic structure studies of diradicals derived from Closo-Carboranes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Electronic structure computations have been performed on diradical systems composed of two carborane radicals CB11H12 · connected through acetylene, ethylene and ethane bridge units, leading, respectively, to a linear and two trans structures. Each cage possesses one unpaired electron and the total system can thus be coupled to a singlet or a triplet state. Numerical determinations using the spin-projected method with a hybrid B3LYP functional show that these compounds have singlet ground states with low singlet–triplet energy gaps of 0.004 eV (acetylene bridge), 0.080 eV (ethylene bridge) and 0.0005 eV (ethane bridge). Spin population analyses point out a left/right localized spin distribution in the spin-projected wave function. The possibility of mapping these results onto a Heisenberg spin Hamiltonian is considered, in order to predict low-lying excited states in extended carborane chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bould J, Baše T, Londesborough MGS, Oro LA, Macías R, Kennedy RJD, Kubát P, Fuciman M, Polívka T, Lang K (2011) Inorg Chem 50:7511

    Article  CAS  Google Scholar 

  2. van der Vlugt JI (2010) Angew Chem Int Ed 49:252

    Article  Google Scholar 

  3. Scholz M, Hey-Hawkins E (2001) Chem Rev 111:7035

    Article  Google Scholar 

  4. El-Zaria ME, Ban HS, Nakamura H (2010) Chem Eur J 16:1543

    Article  CAS  Google Scholar 

  5. Sivaev IB, Bregadze VI, Sjöberg S (2002) Collect Czech Chem Commun 67:679

    Article  CAS  Google Scholar 

  6. Klessinger M, Michl J (1994) Excited states and photochemistry of organic molecules. Wiley-VCH, New York

    Google Scholar 

  7. Valeur B (2002) Molecular fluorescence. Wiley-VCH, Weinheim

    Google Scholar 

  8. Grimes RN (2011) Carboranes, 2nd edn. Academic Press, New York

    Google Scholar 

  9. Serrano-Andrés L, Klein DJ, Schleyer PVR, Oliva JM (2008) J Chem Theory Comput 4:1338

    Article  Google Scholar 

  10. Oliva JM, Serrano-Andrés L (2006) J Comput Chem 27:524

    Article  CAS  Google Scholar 

  11. Londesborough MG, Hnyk D, Bould J, Serrano-Andrés L, Saurí V, Oliva JM, Kubát P, Polívka T, Lang K (2012) Inorg Chem 51:1471

    Article  CAS  Google Scholar 

  12. Oliva JM, Serrano-Andrés L, Havlas Z, Michl J (2009) J Mol Struct (Theochem) 912:13

    Article  CAS  Google Scholar 

  13. Oliva JM (2012) Adv Quantum Chem 64:105

    Google Scholar 

  14. Oliva JM (2011) Cyclic spin architectures built from carborane radicals, XXXIII reunión bienal de la Real Sociedad Española de Física, Santander, Spain, 19–23 Septiembre 2011, p 45

  15. Oliva JM (2011) 11th international conference on computational and mathematical methods in science and engineering, CMMSE 2011, Alicante, Spain, 16–20 June 2011, p 78

  16. King BT, Noll BC, McKinley AJ, Michl J (1996) J Am Chem Soc 118:10902

    Article  CAS  Google Scholar 

  17. Eriksson L, Vyakaranam K, Ludvík J, Michl J (2007) J Org Chem 72:2351

    Article  CAS  Google Scholar 

  18. Roos BO, Andersson K, Fulscher MP, Malmqvist PA, Serrano-Andrés L, Pierloot K, Merchán M (1996) Adv Chem Phys 93:219

    Article  CAS  Google Scholar 

  19. Atkins PW, de Paula J (2009) Physical chemistry, 9th edn. Oxford University Press, Oxford

    Google Scholar 

  20. Frisch MJ et al (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford

    Google Scholar 

  21. Ovchinnikov AA, Labanowski JK (1996) Phys Rev A 53:3946

    Article  CAS  Google Scholar 

  22. Clark A, Davidson ER (2001) J Chem Phys 115:7382

    Article  CAS  Google Scholar 

  23. Podewitz M, Herrmann C, Malassa A, Westerhausen R, Reiher M (2008) Chem Phys Lett 451:301

    Article  CAS  Google Scholar 

  24. Alcoba DR, Lain L, Torre A, Bochicchio RC (2009) Chem Phys Lett 470:136

    Article  CAS  Google Scholar 

  25. Alcoba DR, Torre A, Lain L, Bochicchio RC (2011) J Chem Theory Comput 7:3560

    Article  CAS  Google Scholar 

  26. Soda T, Kitagawa Y, Onishi T, Takano Y, Shigeta Y, Nagao H, Yoshioka Y, Yamaguchi K (2000) Chem Phys Lett 319:223

    Article  CAS  Google Scholar 

  27. Herrmann C, Yu L, Reiher M (2006) J Comput Chem 27:1223

    Article  CAS  Google Scholar 

  28. Ciofinia I, Adamo C, Barone V, Berthier G, Rassat A (2005) Chem Phys 309:133

    Article  Google Scholar 

  29. Philips JJ, Hudspeth MA, Browne PM Jr, Peralta JE (2010) Chem Phys Lett 495:146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This report has been financially supported by the Projects MICINN CTQ2009-13652, UBACYT 20020100100197 (Universidad de Buenos Aires), PIP No. 11220090100061 (Consejo Nacional de Investigaciones Científicas y Técnicas, República Argentina), GIU09/43 (Universidad del País Vasco) and UFI11/07 (Universidad del País Vasco). We thank the Universidad del País Vasco for allocation of computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Oliva.

Additional information

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva, J.M., Alcoba, D.R., Lain, L. et al. Electronic structure studies of diradicals derived from Closo-Carboranes. Theor Chem Acc 132, 1329 (2013). https://doi.org/10.1007/s00214-012-1329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1329-1

Keywords

Navigation