Skip to main content

Search of manifolds of nonsymmetric Valley-Ridge inflection points on the potential energy surface of HCN

Abstract

The potential energy surface (PES) of a chemical reaction contains Valley-Ridge inflection points (VRI) if—an often occurring phenomenon—the reaction path branches. In this paper, we introduce a new direct search method to detect these VRI points. It is based on an inductive execution of Gauss–Newton steps. For the first time, we were able to find not only singular nonsymmetric VRI points, but also whole VRI manifolds on the PES of HCN.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Eyring H, Polanyi M (1931) Über einfache Gasreaktionen. Z Phys Chem B12:279–311

    CAS  Google Scholar 

  2. 2.

    Heidrich D (1995) An Introduction to the nomenclature and usage of the reaction path concept. In: Heidrich D (eds) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, pp 1–10

    Google Scholar 

  3. 3.

    Quapp W, Heidrich D (1984) Analysis of the concept of minimum energy path on the potential energy surface of chemically reacting systems. Theor Chim Acta 66:245–260

    Article  CAS  Google Scholar 

  4. 4.

    Fukui K (1970) A formulation of the reaction coordinate. J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  5. 5.

    Hirsch M, Quapp W (2004) The reaction pathway of a potential energy surface as curve with induced tangent. Chem Phys Lett 395:150–156

    Article  CAS  Google Scholar 

  6. 6.

    Pancíř J (1975) Calculation of the least energy path on the energy hypersurface. Collect Czechoslov Chem Commun 40:1112–1118

    Article  Google Scholar 

  7. 7.

    Basilevsky MV, Shamov AG (1981) The local definition of the optimum ascent path on a multi-dimensional potential energy surface and its practical application for the location of saddle points. Chem Phys 60:347–358

    Article  Google Scholar 

  8. 8.

    Hoffman DK, Nord RS, Ruedenberg K (1986) Gradient extremals. Theor Chim Acta 69:265–279

    Article  CAS  Google Scholar 

  9. 9.

    Heidrich D, Kliesch W, Quapp W (1991) Properties of chemically interesting potential energy surfaces, vol 56 of Lecture Notes in Chemistry. Springer, Berlin

  10. 10.

    Sun J-Q, Ruedenberg K (1993) Gradient extremals and steepest-descent lines on potential energy surfaces. J Chem Phys 98:9707–9714

    Article  CAS  Google Scholar 

  11. 11.

    Quapp W, Imig O, Heidrich D (1995) Gradient extremals and their relation to the minimum energy path. In: Heidrich D (eds) The The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, pp 137–160

    Google Scholar 

  12. 12.

    Perković S, Blokhuis EM, Tessler E, Widom B (1995) Boundary tension: from wetting transition to prewetting critical point. J Chem Phys 102:7584–7594

    Article  Google Scholar 

  13. 13.

    Quapp W, Hirsch M, Imig O, Heidrich D (1998) Searching for saddle points of potential energy surfaces by following a reduced gradient. J Comput Chem 19:1087–1100

    Article  CAS  Google Scholar 

  14. 14.

    Bofill JM, Anglada JM (2001) Finding transition states using reduced potential-energy surfaces. Theor Chem Acc 105:463–472

    Article  CAS  Google Scholar 

  15. 15.

    Crehuet R, Bofill JM, Anglada JM (2002) A new look at the reduced-gradient-following path. Theor Chem Acc 107:130–139

    Article  CAS  Google Scholar 

  16. 16.

    Quapp W (2003) Reduced gradient methods and their relation to reaction paths. J Theor Comput Chem 2:385–417

    Article  CAS  Google Scholar 

  17. 17.

    Valtazanos P, Ruedenberg K (1986) Bifurcations and transition states. Theor Chim Acta 69:281–307

    Article  CAS  Google Scholar 

  18. 18.

    Quapp W (2004) How does a reaction path branching take place? A classification of bifurcation events. J Mol Struct 695–696:95–101

    Article  CAS  Google Scholar 

  19. 19.

    Quapp W, Bofill JM, Aguilar-Mogas A (2011) Exploration of cyclopropyl radical ring opening to allyl radical by Newton trajectories: importance of valley-ridge inflection points to understand the topography. Theor Chem Acc 129:803–821

    Article  CAS  Google Scholar 

  20. 20.

    Jongen H Th, Jonker P, Twilt F (1983) Nonlinear optimization in \({\mathbb R^n}.\) vol 32 of Methoden und Verfahren der Mathematischen Physik. Peter Lang, Bern

  21. 21.

    Diener I (1991) Globale Aspekte des kontinuierlichen Newtonverfahrens. Habilitation, Göttingen

    Google Scholar 

  22. 22.

    Bakken V, Danovich D, Shaik S, Schlegel HB (2001) A single transition state serves two mechanisms: an ab initio classical trajectory study of the electron transfer and substitution mechanisms in reactions of ketyl radical anions with alkyl halides. J Am Chem Soc 123:130–134

    Article  CAS  Google Scholar 

  23. 23.

    Ess DH, Wheeler SE, Iafe RG, Xu L, Çelebi-Ölçüm N, Houk KN (2008) Bifurcations on potential energy surfaces of organic reactions. Angew Chem Int Ed 47:7592–7601

    Article  CAS  Google Scholar 

  24. 24.

    Thomas JB, Waas JR, Harmata M, Singleton DA (2008) Control elements in dynamically determined selectivity on a bifurcating surface. J Am Chem Soc 130:14544–14555

    Article  CAS  Google Scholar 

  25. 25.

    Quapp W (1994) General discussion. J Chem Soc Faraday Trans 90:1607–1608

    Google Scholar 

  26. 26.

    Schlegel HB (1994) Some thoughts on reaction-path following. J Chem Soc Faraday Trans 90:1569–1574

    Article  CAS  Google Scholar 

  27. 27.

    Quapp W, Hirsch M, Heidrich D (1998) Bifurcation of reaction pathways: the set of valley ridge inflection points of a simple three-dimensional potential energy surface. Theor Chem Acc 100:285–299

    Article  CAS  Google Scholar 

  28. 28.

    Quapp W (2008) Chemical reaction paths and calculus of variations. Theor Chem Acc 121:227–237

    Article  CAS  Google Scholar 

  29. 29.

    Bofill JM (2009) Is the reduced gradient following path a curve with extremal properties? J Chem Phys 130:176102

    Article  Google Scholar 

  30. 30.

    Bofill JM, Quapp W (2011) Variational nature, integration, and properties of Newton reaction path. J Chem Phys 134:074101

    Article  Google Scholar 

  31. 31.

    Hirsch M, Quapp W, Heidrich D (1999) The set of valley-ridge inflection points on the potential energy surface of water. Phys Chem Chem Phys 1:5291–5299

    Article  CAS  Google Scholar 

  32. 32.

    Quapp W, Melnikov V (2001) Valley-ridge-inflection points of the potential energy surface of H2S,H2Se, and H2CO. Phys Chem Chem Phys 3:2735–2741

    Article  CAS  Google Scholar 

  33. 33.

    Quapp W, Hirsch M, Heidrich D (2004) An approach to reaction path branching using valley-ridge inflection points of potential energy surfaces. Theor Chem Acc 112:40–51

    Article  CAS  Google Scholar 

  34. 34.

    Quapp W, Schmidt B (2011) An empirical, variational method of approach to unsymmetric valley-ridge inflection points. Theor Chem Acc 128:47–61

    Article  CAS  Google Scholar 

  35. 35.

    Branin FH (1972) Widely convergent methods for finding multiple solutions of simultaneous nonlinear equations. IBM J Res Develop 16:504–522

    Article  Google Scholar 

  36. 36.

    Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York

    Google Scholar 

  37. 37.

    Ben-Israel A, Greville TNE (1974) Generalized inverses: theory and applications. Wiley, New York

    Google Scholar 

  38. 38.

    Allgower EL, Georg K (1997) Numerical path following. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol 5, pp 3–207. North-Holland, Amsterdam

    Google Scholar 

  39. 39.

    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  40. 40.

    Granovsky AA Firefly Version 7.1.G. http://classic.chem.msu.su/gran/firefly/index.html

  41. 41.

    Diener I, Schaback R (1990) An extended continuous Newton method. J Optim Theory Appl 67:57–77

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Quapp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmidt, B., Quapp, W. Search of manifolds of nonsymmetric Valley-Ridge inflection points on the potential energy surface of HCN. Theor Chem Acc 132, 1305 (2013). https://doi.org/10.1007/s00214-012-1305-9

Download citation

Keywords

  • Potential energy surface
  • Valley-Ridge inflection
  • Point bifurcation of reaction paths
  • Manifold of VRIs