Theoretical Chemistry Accounts

, 132:1303 | Cite as

Atomistic simulations of an antimicrobial molecule interacting with a model bacterial membrane

Regular Article

Abstract

The dynamics of an antimicrobial molecule (end-only oligo(p-phenylene ethynylene) or EO-OPE-1 (C3)) interacting with a model bacterial membrane is simulated using all-atom molecular dynamics. It is found that the molecule spontaneously adheres to the membrane at the membrane–water interface, but no insertion into the bilayer was observed within the nanosecond simulation time. However, when the simulations start from an inserted configuration, this molecule aligns with the lipid molecules in the membrane and interacts strongly through electrostatic interactions with the anionic phosphoryl groups of the lipid molecules. Due to the hydrophobic mismatch between the molecule and lipids, the inserted molecule induces the deformation of the membrane in the form of local thinning. When more than one molecule were inserted, self-assembling was observed on a nanosecond scale. However, no transmembrane pore formation was observed, due presumably to the hydrophobic backbone of the molecule. Implications in the biocidal action of this molecule are discussed.

Keywords

Antimicrobial polymer Membrane EO-OPE-1(C3) MD Self-assembly 

References

  1. 1.
    Walsh C (2000) Nature 406:775CrossRefGoogle Scholar
  2. 2.
    Boman HG (1995) Annu Rev Immunol 13:61CrossRefGoogle Scholar
  3. 3.
    Zasloff M (2002) Nature 415:389CrossRefGoogle Scholar
  4. 4.
    Kenawy E-R, Worley SD, Broughton R (2007) Biomacromole 8:1359CrossRefGoogle Scholar
  5. 5.
    Lewis K, Klibanov AM (2005) Trends Biotechnol 23:343CrossRefGoogle Scholar
  6. 6.
    Brogden KA (2005) Nat Rev Microbiol 3:238CrossRefGoogle Scholar
  7. 7.
    Wimley WC (2010) ACS Chem Biol 5:905CrossRefGoogle Scholar
  8. 8.
    Ji E, Corbitt TS, Parthasarathy A, Schanze KS, Whitten DG (2011) ACS Appl Mater Interfaces 3:2820CrossRefGoogle Scholar
  9. 9.
    Lu L, Rininsland FH, Wittenburg SK, Achyuthan KE, McBranch DW, Whitten DG (2005) Langmuir 21:10154CrossRefGoogle Scholar
  10. 10.
    Chemburu S, Corbitt TS, Ista LK, Ji E, Fulghum J, Lopez GP, Ogawa K, Schanze KS, Whitten DG (2008) Langmuir 24:11053CrossRefGoogle Scholar
  11. 11.
    Tang Y, Zhou Z, Ogawa K, Lopez GP, Schanze KS, Whitten DG (2009) Langmuir 25:21CrossRefGoogle Scholar
  12. 12.
    Zhou Z, Corbitt TS, Parthasarathy A, Tang Y, Ista LK, Schanze KS, Whitten DG (2010) J Phys Chem Lett 1:3207CrossRefGoogle Scholar
  13. 13.
    Corbitt TS, Ding L, Ji E, Ista LK, Ogawa K, Lopez GP, Schanze KS, Whitten DG (2009) Photochem Photobiol Sci 8:998CrossRefGoogle Scholar
  14. 14.
    Tang Y, Corbitt TS, Parthasarathy A, Zhou Z, Schanze KS, Whitten DG (2011) Langmuir 27:4956CrossRefGoogle Scholar
  15. 15.
    Ding L, Chi EY, Chemburu S, Ji E, Schanze KS, Lopez GP, Whitten DG (2009) Langmuir 25:13742CrossRefGoogle Scholar
  16. 16.
    Ding L, Chi EY, Schanze KS, Lopez GP, Whitten DG (2009) Langmuir 26:5544CrossRefGoogle Scholar
  17. 17.
    Wang Y, Tang Y, Zhou Z, Ji E, Lopez GP, Chi EY, Schanze KS, Whitten DG (2010) Langmuir 26:12509CrossRefGoogle Scholar
  18. 18.
    Wang Y, Corbitt TS, Jett SD, Tang Y, Schanze KS, Chi EY, Whitten DG (2011) Langmuir 28:65CrossRefGoogle Scholar
  19. 19.
    Leontiadou H, Mark AE, Marrink SJ (2006) J Am Chem Soc 128:12156CrossRefGoogle Scholar
  20. 20.
    Bond PJ, Parton DL, Clark JF, Sansom MSP (2008) Biophys J 95:3802CrossRefGoogle Scholar
  21. 21.
    Tieleman DP, MacCallum JL, Ash WL, Kandt C, Xu Z, Monticelli L (2006) J Phys: Condens Matter 18:S1221CrossRefGoogle Scholar
  22. 22.
    Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN (2010) Peptides 31:1CrossRefGoogle Scholar
  23. 23.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) J Comput Chem 31:671Google Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc., Wallingford CT, vol A.01Google Scholar
  25. 25.
    Feller SE, Yin D, Pastor RW, MacKerell AD Jr (1997) Biophys J 73:2269CrossRefGoogle Scholar
  26. 26.
    Feller SE, MacKerell AD (2000) J Phys Chem B 104:7510CrossRefGoogle Scholar
  27. 27.
    Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) J Phys Chem B 114:7830CrossRefGoogle Scholar
  28. 28.
    Pastor RW, Brooks BR, Szabo A (1988) Mole Phys 65:1409CrossRefGoogle Scholar
  29. 29.
    Ryckaert JP, Ciccotti G, Berendsen HJ (1977) J Comput Phys 23:327CrossRefGoogle Scholar
  30. 30.
    Jo S, Lim JB, Klauda JB, Im W (2009) Biophys J 97:50CrossRefGoogle Scholar
  31. 31.
    Janosi L, Gorfe AA (2010) J Chem Theo Comput 6:3267CrossRefGoogle Scholar
  32. 32.
    Baysal C, Atilgan AR, Erman B, Bahar İ (1996) Macromole 29:2510CrossRefGoogle Scholar
  33. 33.
    Chiu S-W, Clark M, Subramaniam S, Jakobsson E (2000) J Comput Chem 21:121CrossRefGoogle Scholar
  34. 34.
    Duque D, Vega LF (2004) J Chem Phys 121:8611CrossRefGoogle Scholar
  35. 35.
    Martyna GJ, Tobias DJ, Klein ML (1994) J Chem Phys 101:4177CrossRefGoogle Scholar
  36. 36.
    Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613CrossRefGoogle Scholar
  37. 37.
    Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089CrossRefGoogle Scholar
  38. 38.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen L (1995) J Chem Phys 103:8577CrossRefGoogle Scholar
  39. 39.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781CrossRefGoogle Scholar
  40. 40.
    Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Proc Natl Acad Sci USA 101:4083CrossRefGoogle Scholar
  41. 41.
    Gawrisch K, Parsegian VA, Hajduk DAT, Tate MW, Gruner SM, Fuller NL, Rand RP (1992) Biochemistry 31:2856CrossRefGoogle Scholar
  42. 42.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) J Cell Biol 157:1071CrossRefGoogle Scholar
  43. 43.
    Filippov A, Orädd G, Lindblom G (2009) Chem Phys Lipids 159:81CrossRefGoogle Scholar
  44. 44.
    Killian JA (1998) Biochim Biophys Acta 1376:401CrossRefGoogle Scholar
  45. 45.
    Mouritsen OG, Bloom M (1984) Biophys J 46:141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations