Skip to main content
Log in

Density functional and chemical model study of the competition between methyl and hydrogen scission of propane and β-scission of the propyl radical

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this work, we study the competence between the reactions of hydrogen and methyl scission during thermal cracking and combustion of propane, the emergence of the two isomers of the propyl radical, n-propyl and i-propyl, and their subsequent β-scission reaction to ethene and methyl radical. The purpose of the study was to analyze the accuracy of density functional (DFT) methods as applied on this relatively well-known subset of the reactions implied in the production of propylene oxide from propane and propene. Conventional (B3LYP, B3PW91) and state-of-the-art (PBE0, M06, BMK) DFT methods were employed, and their accuracy checked against experimental data and calculations performed using model chemistries (complete basis set CBS-4M, QB3, and APNO, and G4 methods) and ab initio methods (MP2, CCSD(T) with a large 6-311 ++G(3df,2pd) basis set). The results obtained at the BMK level for the thermodynamics of the reactions are closer to experimental data than those afforded by any other DFT method and very similar actually to CBS or CCSD(T) results, even if a medium size basis set is used. Activation energies determined using two- and three-parameter Arrhenius equations are also very good, but the preexponential factors are incorrect. Tunneling and internal rotation corrections must be applied to obtain semiquantitative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olah GA, Molnar A (2003) Hydrocarbon chemistry. Wiley, New York

    Book  Google Scholar 

  2. Clymans PJ, Froment GF (1984) Comput Chem Eng 8:137

    Article  CAS  Google Scholar 

  3. Hillewaert LP, Dierickx JL, Froment GF (1988) AIChE J 34:17

    Article  CAS  Google Scholar 

  4. Ranzi E, Dente M, Plerucci S, Biardi G (1983) Ind Eng Chem Fund 22:132

    Article  CAS  Google Scholar 

  5. Tsang W, Hampson RF (1986) J Phys Chem Ref Data 15:1087

    Article  CAS  Google Scholar 

  6. Tsang W (1987) J Phys Chem Ref Data 16:471

    Article  CAS  Google Scholar 

  7. Sabbe MK, Vandeputte AG, Reyniers M-F, van Speybroeck V, Waroquier M, Marin GB (2007) J Phys Chem A 111:8416

    Article  CAS  Google Scholar 

  8. Zheng X, Blowers P (2006) Ind Eng Chem Res 45:530

    Article  CAS  Google Scholar 

  9. Curran HJ (2006) Int J Chem Kinet 38:250

    Article  CAS  Google Scholar 

  10. Hunter KC, East ALL (2002) J Phys Chem A 106:1346

    Article  CAS  Google Scholar 

  11. Xiao Y, Longo JM, Hieshima GB, Hill RJ (1997) Ind Eng Chem Res 36:4033

    Article  CAS  Google Scholar 

  12. Bencsura A, Knyazev VD, Xing S-B, Slagle IR, Gutman D (1992) Proc Combust Inst 24:629

    Google Scholar 

  13. Tsang W (1988) J Phys Chem Ref Data 17:887

    Article  CAS  Google Scholar 

  14. Papic MM, Laidler KJ (1971) Can J Chem 49:535

    Article  CAS  Google Scholar 

  15. Papic MM, Laidler KJ (1971) Can J Chem 49:549

    Article  CAS  Google Scholar 

  16. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  22. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  24. Boese AD, Martin JML (2004) J Chem Phys 121:3405

    Article  CAS  Google Scholar 

  25. Pople JA, Gill PMW, Johnson BG (1992) Chem Phys Lett 199:557

    Article  CAS  Google Scholar 

  26. Johnson BG, Frisch MJ (1993) Chem Phys Lett 216:133

    Article  CAS  Google Scholar 

  27. Johnson BG, Frisch MJ (1994) J Chem Phys 100:7429

    Article  CAS  Google Scholar 

  28. Stratmann RE, Burant JC, Scuseria GE, Frisch MJ (1997) J Chem Phys 106:10175

    Article  CAS  Google Scholar 

  29. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  30. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  31. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:281

    Google Scholar 

  32. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122

    Article  CAS  Google Scholar 

  33. Bartlett RJ, Purvis GD III (1978) Int J Quantum Chem 14:561

    Article  CAS  Google Scholar 

  34. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  35. Nyden MR, Petersson GA (1981) J Chem Phys 75:1843

    Article  CAS  Google Scholar 

  36. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89:2193

    Article  CAS  Google Scholar 

  37. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081

    Article  CAS  Google Scholar 

  38. Petersson GA, Tensfeldt TG, Montgomery JA Jr (1991) J Chem Phys 94:6091

    Article  CAS  Google Scholar 

  39. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  40. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  41. Ochterski JW, Petersson GA, Montgomery JA Jr (1996) J Chem Phys 104:2598

    Article  CAS  Google Scholar 

  42. Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:084108

    Article  Google Scholar 

  43. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  44. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford

  45. Ghysels A, Verstraelen T, Hemelsoet K, Waroquier M, Van Speybroeck V (2010) J Chem Inf Model 50:1736

    Article  CAS  Google Scholar 

  46. Sundaram KM, Froment GF (1979) Chem Eng Sci 34:635

    Article  CAS  Google Scholar 

  47. Van Damme PS, Narayanan S, Froment GF (1975) AIChE J 21:1065

    Article  Google Scholar 

  48. Linstrom PJ, Mallard WG, Eds (2003) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov

  49. Zheng X (2006) A computational investigation of hydrocarbon cracking: gas phase and heterogeneous catalytic reactions on zeolites, PhD Dissertation, University of Arizona, Tucson, Arizona

  50. Zheng X, Blowers P (2005) Mol Simul 31:979

    Article  CAS  Google Scholar 

  51. Baldwin RR, Walker RW (1979) J Chem Soc Faraday Trans 75:140

    Article  CAS  Google Scholar 

  52. Kerr JA, Parsonage MJ (1976) Evaluated kinetic data on gas phase hydrogen transfer reactions of methyl radicals. Butterworths, London

    Google Scholar 

  53. Matheu DM, Green WH, Grenda JM (2003) Int J Chem Kinet 35:95

    Article  CAS  Google Scholar 

  54. Berkley RE, Woodall GNC, Strausz OP (1969) Gunning HE 47:3305

    CAS  Google Scholar 

  55. Tsang W (1985) J Am Chem Soc 107:2872

    Article  CAS  Google Scholar 

  56. Dean AM (1985) J Phys Chem 89:4600

    Article  CAS  Google Scholar 

  57. Mintz KJ, Le Roy DJ (1978) Can J Chem 56:941

    Article  CAS  Google Scholar 

  58. Camilleri P, Marshall RM, Purnell H (1975) J Chem Soc Faraday Trans I(71):1491

    Google Scholar 

  59. Lin MC, Laidler KJ (1966) Can J Chem 44:2927

    Article  CAS  Google Scholar 

  60. Kerr JA, Calvery JG (1961) J Am Chem Soc 83:3391

    Article  CAS  Google Scholar 

  61. Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M (2004) AIChE J 50:426

    Article  CAS  Google Scholar 

  62. Hogg AM, Kebarle P (1964) J Am Chem Soc 86:4558

    Article  CAS  Google Scholar 

  63. Baulch DL, Cobos CJ, Cox RA, Esser C, Frank P, Just Th, Kerr JA, Pilling MJ, Troe J, Walker RW, Warnatz J (1992) J Phys Chem Ref Data 21:411

    Article  CAS  Google Scholar 

  64. Leathard DA, Purnell JH (1968) Proc R Soc Lond A 306:553

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CSIC, ANII, and Pedeciba through multiple grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar N. Ventura.

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segovia, M.E., Irving, K. & Ventura, O.N. Density functional and chemical model study of the competition between methyl and hydrogen scission of propane and β-scission of the propyl radical. Theor Chem Acc 132, 1301 (2013). https://doi.org/10.1007/s00214-012-1301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1301-0

Keywords

Navigation