Skip to main content
Log in

A computational study toward understanding the separation of ions of potassium chloride microcrystal in water

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The dissolution phenomenon of potassium chloride microcrystal in water has been studied using DFT calculations and molecular dynamics studies. DFT study reveals the departure of Cl to be more pronounced from the edge positions compared to the corner sites of the KCl [(KCl)6(H2O) n , n = 1–15] microcrystal lattice. The dissolution initiates through the movement of a Cl from the edge of the crystal lattice (5.19 Å) at n = 4 water molecules in agreement with the separation of ions from a single KCl molecule. This separation is more evident with the cluster of 6 water molecules (6.12 Å). The characteristics of KCl dissolution dynamics, such as the sequential departure of ions from the crystal, the hydrated ions and the dynamical role of the water molecules, are further studied by classical molecular dynamics simulations employing GROMACS force field. Molecular dynamics calculations are performed with a larger crystal of KCl with {100} plane consisting of 108 K+ and 108 Cl ions. The MD studies have been extended with relatively unstable planes of KCl {110} (consisting of 105 K+ and 105 Cl ions) and {111} (consisting of 120 K+ and 120 Cl ions). The simulations revealed that the dissolution of {110} and {111} planes is relatively faster than that of the stable {100} plane. A mean square displacement analysis also supported this observation. The dissolution of the ions generally occurs from the top layer of {100} surface, while other layers remain intact. However, such a definite pattern of dissolution is not noticed with {110} and {111} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Marcus Y (1985) Ion solvation. Wiley-Interscience, New York

    Google Scholar 

  2. Kirk KL (1991) Biochemistry of halogens and inorganic halides. Plenum, New York

    Book  Google Scholar 

  3. Desvergne J-P (1997) In: Czarnik AW (ed) Chemisensors of ion and molecular recognition. Kluwer, Dordrecht, p 492

    Chapter  Google Scholar 

  4. Arshadi M, Yamdangi R, Kebarle P (1970) J Phys Chem 74:1475–1482

    Article  CAS  Google Scholar 

  5. Lisy JM (1997) Int Rev Phys Chem 16:267–289

    Article  CAS  Google Scholar 

  6. Patwari GN, Lisy JM (2003) J Chem Phys 118:8555–8558

    Article  CAS  Google Scholar 

  7. Hammer NI, Shin J-W, Headrick JM, Diken EG, Roscioli JR, Weddle GH, Johnson MA (2004) Science 306:675–679

    Article  CAS  Google Scholar 

  8. Katz AK, Gulsker JP, Blebe SA, Bock CW (1996) J Am Chem Soc 118:5752–5763

    Article  CAS  Google Scholar 

  9. Glendening ED, Feller D (1995) J Phys Chem 99:3060–3067

    Article  CAS  Google Scholar 

  10. Feller D, Glendening ED, Woon DE, Feyereisen MW (1995) J Chem Phys 103:3526–3542

    Article  CAS  Google Scholar 

  11. Lee J, Cho SJ, Mhin BJ, Kim KS (1995) J Chem Phys 102:839–851

    Article  Google Scholar 

  12. Lee HM, Kim J, Lee S, Mhin BJ, Kim KS (1999) J Chem Phys 111:3995–4004

    Article  CAS  Google Scholar 

  13. Lee HM, Tarakeshwar P, Park J, Kolaski MR, Yoon YJ, Yi H-B, Kim WY, Kim KS (2004) J Phys Chem A 108:2949–2958

    Article  CAS  Google Scholar 

  14. Xantheas SS (1995) J Chem Phys 102:4505–4517

    Article  CAS  Google Scholar 

  15. Ayotte P, Nielsen SB, Weddle GH, Johnson MA, Xantheas SS (1999) J Phys Chem A 103:10665–10669

    Article  CAS  Google Scholar 

  16. Cabarcos OM, Weinheimer CJ, Lisy JM, Xantheas SS (1999) J Chem Phys 110:5–8

    Article  CAS  Google Scholar 

  17. Ault BS (1978) J Am Chem Soc 100:2426–2433

    Article  CAS  Google Scholar 

  18. Singh NM, Yi HB, Min SK, Park M, Kim KS (2006) J Phys Chem B 110:3808–3815

    Article  CAS  Google Scholar 

  19. Jungwirth P (2000) J Phys Chem A 104:145–148

    Article  CAS  Google Scholar 

  20. Jungwirth P, Tobias DJ (2002) J Phys Chem B 106:6361–6373

    Article  CAS  Google Scholar 

  21. Woon DE Jr, Dunning TH (1995) J Am Chem Soc 117:1090–1097

    Article  CAS  Google Scholar 

  22. Yamabe S, Kouno H, Matsumura KJ (2000) Phys Chem B 104:10242–10252

    Article  CAS  Google Scholar 

  23. Liu L-M, Laio A, Michaelides A (2011) Phys Chem Chem Phys 13:13162–13166

    Article  CAS  Google Scholar 

  24. Asada T, Nishimoto K (1995) Chem Phys Lett 232:518–523

    Article  CAS  Google Scholar 

  25. Ohtaki H, Fukushima N (1989) Pure Appl Chem 61:179–185

    Article  CAS  Google Scholar 

  26. Yang Y, Meng S, Wang EG (2006) J Phys Condens Matter 18:10165–10177

    Article  CAS  Google Scholar 

  27. Du H, Miller JD (2007) J Phys Chem C111:10013–10022

    Google Scholar 

  28. Sen A, Ganguly B (2010) J Comput Chem 31:2948–2954

    CAS  Google Scholar 

  29. Peslherbe GH, Ladanyi BM, Hynes JT (2000) J Phys Chem A 104:4533–4548

    Article  CAS  Google Scholar 

  30. Beichert P, Finlayson-Pitts BJ (1996) J Phys Chem 100:15218–15228

    Article  CAS  Google Scholar 

  31. DeHaan DO, Finlayson-Pitts BJ (1997) J Phys Chem A 101:9993–9999

    Article  CAS  Google Scholar 

  32. Oum KW, Lakin MJ, DeHaan DO, Brauer T, Finlayson-Pitts BJ (1998) Science 279:74–76

    Article  CAS  Google Scholar 

  33. Schweitzer F, Magi L, Mirabel P, George C (1998) J Phys Chem A 102:593–600

    Article  CAS  Google Scholar 

  34. Reichardt C, Welton T (1985) Solvation and solvent effects in organic chemistry, 4th edn. Wiley-VCH, Germany

    Google Scholar 

  35. Makov G, Nitzan A (1992) J Phys Chem 96:2965–2967

    Article  CAS  Google Scholar 

  36. Zubov AV, Zubov KV, Zubov VA (2007) Russ J Appl Chem 80:1249–1255

    Article  CAS  Google Scholar 

  37. Born M, Stern O (1919) Sitzber Preuss Akad Wiss 48:901

    CAS  Google Scholar 

  38. Westwood ARC, Hitch TT (1963) J Appl Phys 34:3085–3089

    Article  CAS  Google Scholar 

  39. Gilman JJ (1960) J Appl Phys 31:2208–2218

    Article  CAS  Google Scholar 

  40. Livey DT, Murray P (1956) J Am Ceram Soc 39:363–372

    Article  Google Scholar 

  41. Bruno M, Aquilano D, Pastero L, Prencipe M (2008) Cryst Growth Des 8:2163–2170

    Article  CAS  Google Scholar 

  42. Perdew JP, Wang Y (1986) Phys Rev B 33:8800–8802

    Article  Google Scholar 

  43. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  44. Becke AD (1996) J Chem Phys 104:1040–1047

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  47. Ziesche P, Kurth S, Perdew JP (1998) Comput Mater Sci 11:122–127

    Article  Google Scholar 

  48. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  49. Wu Z, Cohen RE, Singh DJ (2004) Phys Rev B 70:104112–104118

    Article  Google Scholar 

  50. Materials Studio DMOL3 Version 4.1 Accelrys Inc., San Diego

  51. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  52. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  53. Delley B (1996) J Phys Chem 100:6107–6110

    Article  CAS  Google Scholar 

  54. Lee CT, Wang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  55. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  56. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  57. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, (2010) Gaussian, Inc., Wallingford

  58. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV: constants of diatomic molecules. Van Nostrand-Reinhold, New York

    Google Scholar 

  59. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  60. van Gunsteren WF, Billeter S, Eising AA, Hünenberger PH, Krüger P, Mark AE (1996) Biomolecular simulation:the gromos96 manual and user guide Zürich:Vdf Hochschulverlag AG an der ETH Zürich

  61. Jorgensen W, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  62. Abascal JLF, Sanz E, García Fernández R, Vegas C (2005) J Chem Phys 122:234511–234519

    Article  CAS  Google Scholar 

  63. Abascal JLF, Vega C (2005) J Chem Phys 123:234505–234516

    Article  CAS  Google Scholar 

  64. Singh A, Chakraborty S, Ganguly B (2007) Langmuir 23:5406–5411

    Article  CAS  Google Scholar 

  65. Khan MAS, Sen A, Ganguly B (2009) Cryst Eng Comm 11:2660–2667 and references within

    Google Scholar 

  66. Singh A, Sen A, Ganguly B (2010) J Mol Graph Model 28:413–419 and references within

    Google Scholar 

  67. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  68. Darden T, York D, Pedersen L (1993) Chem Phys 98:10089–10092

    CAS  Google Scholar 

  69. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  70. Straatsma TP, Berendsen HJC (1988) J Chem Phys 89:5876–5888

    Article  CAS  Google Scholar 

  71. Gurtovenko AA, Vattulainen I (2008) J Phys Chem B 112:1953–1962

    Article  CAS  Google Scholar 

  72. Dennis CG, Marimuthu K, David RN, Jeremy CS (2010) J Chem Theor Comp 6:1390–1400

    Article  Google Scholar 

  73. Dimitrios A, David RC, Alberto S (2009) J Phys Chem 113:19591–19600

    Google Scholar 

  74. Servaas M, Titus S van E, Carsten K, Arnout C, Bert L de G (2012) J Phys Chem B. doi:10.1021/jp209964a

  75. Lide DR (1998) Handbook of chemistry and physics, section 9, 79th edn. CRC Press, Boca Raton, p 23

    Google Scholar 

  76. Džidić I, Kebarle P (1970) J Phys Chem 74:1466–1474

    Article  Google Scholar 

  77. Yamabe S, Furumiya Y, Hiraoka K, Morise K (1986) Chem Phys Lett 131:261–266

    Article  CAS  Google Scholar 

  78. Langer S, Pemberton RS, Finlayson-Pitts BJ (1997) J Phys Chem A 101:1277–1286

    Article  CAS  Google Scholar 

  79. Cooker H (1976) J Phys Chem 80:2078–2084

    Article  Google Scholar 

  80. Mullin JW (1993) Crystallization, 3rd edn. Butterworth, London, p 238

    Google Scholar 

  81. Beinfait M, Boistelle R, Kern R (1965) In: Kern R (ed) Adsorbtion er Croissance Cristalline. Centre National de la Recherche Scientifique, Paris, p 152

    Google Scholar 

  82. Green M (1971) Surf Sci 26:549–556

    Article  CAS  Google Scholar 

  83. Klug DL (1993) In: Myerson AS (ed) Handbook of industrial crystallization. Butterworth, Montvale, p 65

    Google Scholar 

  84. Boistelle R, Simon B (1974) J Cryst Growth 26:140–146

    Article  CAS  Google Scholar 

  85. Shinto H, Sakakibara T, Higashitani K (1998) J Phys Chem B 102:1974–1981

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank DST, New Delhi, India, for financial support of this work. One of the authors AS is thankful to UGC, New Delhi, India, for awarding senior research fellowship. We thank Prof. Jim Thomas (University of Sheffield, UK) for helping in preparing the manuscript. Authors thank the reviewers for their comments and suggestions that have helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwajit Ganguly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4754 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, A., Ganguly, B. A computational study toward understanding the separation of ions of potassium chloride microcrystal in water. Theor Chem Acc 131, 1296 (2012). https://doi.org/10.1007/s00214-012-1296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1296-6

Keywords

Navigation