Advertisement

Theoretical Chemistry Accounts

, 132:1291 | Cite as

A simple DFT-based diagnostic for nondynamical correlation

  • Uma R. Fogueri
  • Sebastian Kozuch
  • Amir Karton
  • Jan M. L. Martin
Regular Article
Part of the following topical collections:
  1. Theoretical and Computational Chemistry in Belgium Collection

Abstract

We propose a simple DFT-based diagnostic for nondynamical correlation effects, namely A λ = (1 − TAE[X λ C]/TAE[XC])/λ where TAE stands for the molecular total atomization energy, XC is a pure-DFT exchange-correlation functional, and X λ C represents the corresponding hybrid with 100λ % Hartree–Fock-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most wavefunction-based diagnostics. For GGA functionals, A λ values approaching unity indicate severe nondynamical correlation, while values between 0 and about 0.1 indicate systems where correlation is predominantly dynamical in character (or entirely absent). The diagnostic is only weakly sensitive to the basis set (beyond polarized valence double zeta) and can easily be applied to problems beyond the practical reach of wavefunction ab initio methods required for other diagnostics. We also propose a simple measure for the importance of dynamic correlation.

Keywords

Nondynamical correlation Density functional theory Diagnostics Ab initio Thermochemistry 

Notes

Acknowledgments

J. M. L. M. is on leave of absence as the Thatcher Professor of Chemistry at the Weizmann Institute of Science. This research was supported in part by a startup grant from the University of North Texas from which the Martin group Linux cluster was purchased. U. R. F. acknowledges a research assistant fellowship from the Department of Chemistry at the University of North Texas, while S. K. and A. K. acknowledge Koshland and Australian Research Council postdoctoral fellowships, respectively. The authors would like to thank the reviewers for helpful comments, and Drs. Wanyi Jiang and Angela K. Wilson (U. of North Texas) for helpful discussions.

Supplementary material

214_2012_1291_MOESM1_ESM.xlsx (156 kb)
Supplementary material 1 (XLSX 156 kb)

References

  1. 1.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  2. 2.
    Sinanoglu O (1964) Adv Chem Phys 6:315–412CrossRefGoogle Scholar
  3. 3.
    Hollett JW, Gill PMW (2011) J Chem Phys 134:114111CrossRefGoogle Scholar
  4. 4.
    Scuseria GE, Tsuchimoshi T (2009) J Chem Phys 131:164119CrossRefGoogle Scholar
  5. 5.
    Seeger R, Pople JA (1977) J Chem Phys 66:3045CrossRefGoogle Scholar
  6. 6.
    Pople JA, Binkley JS (1975) Mol Phys 29:599CrossRefGoogle Scholar
  7. 7.
    Pople JA, Nesbet RK (1954) J Chem Phys 22:571CrossRefGoogle Scholar
  8. 8.
    Ostlund NS (1972) J Chem Phys 57:2994CrossRefGoogle Scholar
  9. 9.
    Linderberg J, Shull H (1961) J Mol Spectrosc 5:1CrossRefGoogle Scholar
  10. 10.
    Englert BG, Schwinger J (1985) Phys Rev A 32:47 and references thereinCrossRefGoogle Scholar
  11. 11.
    Elliott P, Burke K (2009) Can J Chem 87(10):1485–1491CrossRefGoogle Scholar
  12. 12.
    Supreme Court of the United States decision in Jacobellis vs. Ohio (1964) US Reports 378:184. URL:http://laws.findlaw.com/us/378/184.html
  13. 13.
    Zanardi P (2002) Phys Rev A 65:042101 and references thereinCrossRefGoogle Scholar
  14. 14.
    Ziesche P, Gunnarson O, John W, Beck H (1997) Phys Rev B 55:10270CrossRefGoogle Scholar
  15. 15.
    Huang Z, Wang H, Kais S (2006) J Mod Opt 53:2543CrossRefGoogle Scholar
  16. 16.
    Gersdorf P, John W, Perdew JP, Ziesche P (1997) Int J Quantum Chem 61:935CrossRefGoogle Scholar
  17. 17.
    Murg W, Verstraete F, Legeza O, Noack RM (2010) Phys Rev B 82:205105 and references thereinCrossRefGoogle Scholar
  18. 18.
    Pelzer K, Greenman L, Gidofalvi G, Mazziotti DA (2011) J Phys Chem A 115:5632CrossRefGoogle Scholar
  19. 19.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp S23:199–207Google Scholar
  20. 20.
    Janssen CL, Nielsen IMB (1998) Chem Phys Lett 290:423–430 (closed-shell)CrossRefGoogle Scholar
  21. 21.
    Leininger ML, Nielsen IMB, Crawford TD, Janssen CL (2000) Chem Phys Lett 328:431–436 (open-shell)CrossRefGoogle Scholar
  22. 22.
    Lee TJ (2003) Chem Phys Lett 372:362–367 (revised open-shell)CrossRefGoogle Scholar
  23. 23.
    Karton A, Rabinovich E, Martin JML, Ruscic B (2006) J Chem Phys 125:144108CrossRefGoogle Scholar
  24. 24.
    Karton A, Parthiban S, Martin JML (2009) J Phys Chem A 113:4802–4816 and references thereinCrossRefGoogle Scholar
  25. 25.
    Tishchenko O, Zheng J, Truhlar DG (2008) J Chem Theory Comput 4:1208–1219CrossRefGoogle Scholar
  26. 26.
    Jiang W, DeYonker N, Wilson AK (2012) J Chem Theory Comput 8:460 and references thereinCrossRefGoogle Scholar
  27. 27.
    Mok DKW, Neumann R, Handy NC (1996) J Phys Chem 100:6225CrossRefGoogle Scholar
  28. 28.
    Krylov AI, Sherrill CD, Byrd EFC, Head-Gordon M (1998) J Chem Phys 109:10669CrossRefGoogle Scholar
  29. 29.
    Karton A, Taylor PR, Martin JML (2007) J Chem Phys 127:064104CrossRefGoogle Scholar
  30. 30.
    Karton A, Daon S, Martin JML (2011) Chem Phys Lett 510:165–178CrossRefGoogle Scholar
  31. 31.
    Dunning TH (1007) J Chem Phys 1989:90Google Scholar
  32. 32.
    Bak KL, Jørgensen P, Olsen J, Helgaker T, Gauss J (2000) Chem Phys Lett 317:116CrossRefGoogle Scholar
  33. 33.
    Boese AD, Oren M, Atasoylu O, Martin JML, Kállay M, Gauss J (2004) J Chem Phys 120:4129–4141CrossRefGoogle Scholar
  34. 34.
    Perdew JP, Schmidt K (2001) AIP Conf Proc 577:1CrossRefGoogle Scholar
  35. 35.
    Harris J, Jones R (1974) J Phys F 4:117Google Scholar
  36. 36.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  37. 37.
    Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157–173CrossRefGoogle Scholar
  38. 38.
    Werner H-J, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar KR, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, O’Neill DP, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2011) MOLPRO 2010.1, Departments of Chemistry, Universities of Cardiff, Wales and Stuttgart, Germany. http://www.molpro.net
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford, CT. http://www.gaussian.com Google Scholar
  40. 40.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200CrossRefGoogle Scholar
  41. 41.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  42. 42.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  43. 43.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  44. 44.
    Perdew JP, BurkeK, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868; erratum 78 (1997) 1396Google Scholar
  45. 45.
    Becke AD (1996) J Chem Phys 104:1040CrossRefGoogle Scholar
  46. 46.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  47. 47.
    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127CrossRefGoogle Scholar
  48. 48.
    Zhao Y, Tishchenko O, Gour JR, Li W, Lutz JJ, Piecuch P, Truhlar DG (2009) J Phys Chem A 113:5786CrossRefGoogle Scholar
  49. 49.
    Jensen F (2001) J Chem Phys 115:9113CrossRefGoogle Scholar
  50. 50.
    Jensen F (2002) J Chem Phys 116:3502CrossRefGoogle Scholar
  51. 51.
    Jensen F (2002) J Chem Phys 116:7372CrossRefGoogle Scholar
  52. 52.
    Jensen F (2002) J Chem Phys 117:9234CrossRefGoogle Scholar
  53. 53.
    Jensen F (2012) J Chem Phys 136:094110CrossRefGoogle Scholar
  54. 54.
    Jensen F (2008) J Phys Chem A 111:11198CrossRefGoogle Scholar
  55. 55.
    Jensen F, Helgaker T (2004) J Chem Phys 121:3463CrossRefGoogle Scholar
  56. 56.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  57. 57.
    Kozuch S, Martin JML (2011) Phys Chem Chem Phys 13:20104 and references thereinCrossRefGoogle Scholar
  58. 58.
    Görling A, Levy M (1993) Phys Rev B 47:13105CrossRefGoogle Scholar
  59. 59.
    Cohen AJ, Handy NC (2001) Mol Phys 99:403CrossRefGoogle Scholar
  60. 60.
    Cohen AJ, Handy NC (2001) Mol Phys 99:607CrossRefGoogle Scholar
  61. 61.
    Polo V, Grafenstein J, Kraka E, Cremer D (2002) Chem Phys Lett 352:469CrossRefGoogle Scholar
  62. 62.
    Henderson TM, Scuseria GE (2010) Mol Phys 108:2511CrossRefGoogle Scholar
  63. 63.
    Huzak M, Deleuze MS, Hajgato B (2011) J Chem Phys 135:104704 eq. (44)CrossRefGoogle Scholar
  64. 64.
    Hajgato B, Szieberth D, Geerlings P, De Proft F, Deleuze MS (2009) J Chem Phys 131:224321CrossRefGoogle Scholar
  65. 65.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefGoogle Scholar
  66. 66.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215; erratum 119:525 (2008)Google Scholar
  67. 67.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126CrossRefGoogle Scholar
  68. 68.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  69. 69.
    Boese AD, Martin JML (2004) J Chem Phys 121:3405CrossRefGoogle Scholar
  70. 70.
    Boese AD, Handy NC (2002) J Chem Phys 116:9559CrossRefGoogle Scholar
  71. 71.
    Geerlings P, Ayers PW, Toro-Labbé A, Chattaraj PK, De Proft F (2012) Acc Chem Res 45(5):683–695Google Scholar
  72. 72.
    Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793CrossRefGoogle Scholar
  73. 73.
    Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Uma R. Fogueri
    • 1
  • Sebastian Kozuch
    • 2
  • Amir Karton
    • 3
  • Jan M. L. Martin
    • 1
    • 2
  1. 1.Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM)University of North TexasDentonUSA
  2. 2.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael
  3. 3.School of ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations