Abstract
We study the charge transfer between colliding ions, atoms, or molecules, within time-dependent density functional theory. Two particular cases are presented, the collision between a proton and a Helium atom, and between a gold atom and a butane molecule. In the first case, proton kinetic energies between 16 keV and 1.2 MeV are considered, with impact parameters between 0.31 and 1.9 Å. The partial transfer of charge is monitored with time. The total cross-section is obtained as a function of the proton kinetic energy. In the second case, we analyze one trajectory and discuss spin-dependent charge transfer between the different fragments.
This is a preview of subscription content, access via your institution.








References
- 1.
Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, New York
- 2.
Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, London
- 3.
Matta CF (2010) How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. J Comp Chem 31:1297. doi:10.1002/jcc.21417
- 4.
Yabana K, Tazawa T, Abe Y, Bo zek P (1998) Time-dependent mean-field description for multiple electron transfer in slow ion-cluster collisions. Phys Rev A 57:R3165. doi:10.1103/PhysRevA.57.R3165
- 5.
Kirchner T, Horbatsch M, Lüdde HJ (2002) Time-dependent independent-particle model calculation of multiple capture and ionization processes in \(p-\hbox{Ar},\overline{p}-\hbox{Ar},\) and He2+ − Ar collisions. Phys Rev A 66:052719. doi:10.1103/PhysRevA.66.052719
- 6.
Vanroose W, Martin F, Rescigno TN, McCurdy CW (2005) Complete photo-induced breakup of H2 molecule as a probe of molecular electron correlation. Science 310:1787. doi:10.1126/science.1120263
- 7.
Saalmann U, Schmidt R (1996) Non-adiabatic quantum molecular dynamics: basic formalism and case study Z. fr. Phys D 38:153. doi:10.1007/s004600050077
- 8.
Kulander KC, Devi KR, Sandhya , Koonin SE (1982) Time-dependent Hartree-Fock theory of charge exchange: Application to He2+ + He. Phys Rev A 25:2968. doi:10.1103/PhysRevA.25.2968
- 9.
Tully JC (1990) Molecular dynamics with electronic transitions. J Chem Phys 93:1061. doi:10.1063/1.459170
- 10.
Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997. doi:10.1103/PhysRevLett.52.997
- 11.
Keim M, Achenbach A, Lüdde HJ, Kirchner T (2005) Time-dependent density functional theory calculations for collisions of bare ions with helium. Nucl Instrum Meth B 233:240. doi:10.1016/j.nimb.2005.03.114
- 12.
Rudd ME, DuBois RD, Toburen LH, Ratcliffe CA, Goffe TV (1983) Cross sections for ionization of gases by 5-4000-keV protons and for electron capture by 5-150-keV protons. Phys Rev A 28:3244. doi:10.1103/PhysRevA.28.3244
- 13.
Rudd ME, Kim YK, Madison DH, Gallagher JW (1985) Electron production in proton collisions: total cross sections. Rev Mod Phys 57:965. doi:10.1103/RevModPhys.57.965
- 14.
Wang F, Xu XC, Hong XH, Wang J, Gou BC (2011) A theoretical model for electron transfer in ion-atom collisions: calculations for the collision of a proton with an argon atom. Phys Lett A 375:3290. doi:10.1016/j.physleta.2011.07.032
- 15.
Wang F, Hong XH, Wang J, Gou BC, Wang JG (2012) Comparison of three methods for calculation of electron transfer probability in H+ + Ne . Phys Lett A 376:469. doi:10.1016/j.physleta.2011.11.031
- 16.
Isborn CM, Li X, Tully JC (2007) Time-dependent density functional theory Ehrenfest dynamics: collisions between atomic oxygen and graphite clusters. J Chem Phys 126:134307. doi:10.1063/1.2713391
- 17.
Pruneda JM, Sánchez-Portal D, Arnau A, Juaristi JI , Artacho E (2007) Electronic stopping power in LiF from first principles. Phys Rev Lett 99:235501. doi:10.1103/PhysRevLett.99.235501
- 18.
Pruneda JM, Sánchez-Portal D, Arnau A, Juaristi JI, Artacho E (2009) Heating electrons with ion irradiation: a first-principles approach. Nucl Instrum Meth B 267:590. doi:10.1016/j.nimb.2008.11.012
- 19.
Delcorte A, Bour J, Aubriet F, Muller JF, Bertrand P (2003) Sample metallization for performance improvement in desorption/ionization of kilodalton molecules:quantitative evaluation, imaging secondary ion MS, and laser ablation. Anal Chem 75:6875. doi:10.1021/ac0302105
- 20.
Restrepo OA, Prabhakaran A, Hamraoui K, Wehbe N, Yunus S, Bertrand P, Delcorte A (2010) Mechanisms of metal-assisted secondary ion mass spectrometry: a mixed theoretical and experimental study. Surf Interface Anal 42:1030. doi:10.1002/sia.3203
- 21.
Restrepo OA, Delcorte A (2011) Molecular dynamics study of metal-organic samples bombarded by kiloelectronvolt projectiles. Surf Interface Anal 43:70. doi:10.1002/sia.3411
- 22.
Wang F, Hong X, Wang J, Kim KS (2011) Coordinate space translation technique for simulation of electronic process in the ion–atom collision. J Chem Phys 134:154308. doi:10.1063/1.3581820
- 23.
Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theo Chim Acta 44:129. doi:10.1007/BF00549096
- 24.
Marques MAL, Gross EKU (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427. doi:10.1146/annurev.physchem.55.091602.094449
- 25.
Marques M, Gross E (2003) In: Fiolhais C, Nogueira F, Marques M (eds) A primer in density functional theory. Springer, Berlin. doi:10.1007/3-540-37072-2
- 26.
Marques M, Ullrich C, Nogueira F, Rubio A, Burke K, Gross EKU (2006) Time-dependent density functional theory. Springer, Berlin. doi:10.1007/b11767107
- 27.
Engel E, Dreizler RM (2011) Density functional theory. Springer, Berlin. doi:10.1007/978-3-642-14090-7
- 28.
Gross EKU, Maitra N (2012) Fundamentals of time-dependent density functional theory. Springer, Berlin. doi:10.1007/978-3-642-23518-4
- 29.
Marques MAL, Castro A, Bertsch GF, Rubio A (2003) Octopus: a first-principles tool for excited electron-ion dynamics. Comput Phys Commun 151:60. doi:10.1016/S0010-4655(02)00686-0
- 30.
Castro A, Heiko A, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques MAL, Gross EKU, Rubio A (2006) Octopus: a tool for the application of time-dependent density functional theory. Phys Status Solidi (b) 243:2465. doi:10.1002/pssb.200642067
- 31.
Alonso JL, Andrade X, Echenique P, Falceto F, Prada-Gracia D, Rubio A (2008) Efficient formalism for large-scale Ab Initio molecular dynamics based on time-dependent density functional theory. Phys Rev Lett 101:096403. doi:10.1103/PhysRevLett.101.096403
- 32.
Andrade X, Castro A, Zueco D, Alonso JL, Echenique P, Falceto F, Rubio Ángel (2009) Modified Ehrenfest formalism for efficient large-scale ab initio molecular dynamics. J Chem Theo Comp 5:728. doi:10.1021/ct800518j
- 33.
Castro A, Marques MAL, Rubio A (2004) Propagators for the time-dependent Kohn–Sham equations. J Chem Phys 121:3425. doi:10.1063/1.1774980
- 34.
Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048. doi:10.1103/PhysRevB.23.5048
- 35.
Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244. doi:10.1103/PhysRevB.45.13244
- 36.
Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993. doi:10.1103/PhysRevB.43.1993
- 37.
Belkic D (1978) A quantum theory of ionisation in fast collisions between ions and atomic systems. J Phys B At Mol Phys 11:3529. doi:10.1088/0022-3700/11/20/015
- 38.
Belkic D, Gayet R, Salin A (1979) Electron capture in high-energy ion-atom collisions. Phys Rep 56:279. doi:10.1016/0370-1573(79)90035-8
- 39.
Mergel V, Dörner R, Achler M, Khayyat Kh, Lencinas S, Euler J, Jagutzki O, Nüttgens S, Unverzagt M, Spielberger L, Wu W, Ali R, Ullrich J, Cederquist H, Salin A, Wood CJ, Olson RE, Belkić Dž, Cocke CL, Schmidt-Böcking H (1997) Intra-atomic electron-electron scattering in p-He collisions (Thomas Process) investigated by cold target recoil ion momentum spectroscopy. Phys Rev Lett 79:387. doi:10.1103/PhysRevLett.79.387
- 40.
Hasan A, Tooke B, Zapukhlyak M, Kirchner T, Schulz M (2006) Kinematically complete experiment on transfer excitation in intermediate-energy p + He collisions. Phys Rev A 74:032703. doi:10.1103/PhysRevA.74.032703
- 41.
Meister J, Schwarz WHE (1994) Principal components of ionicity. J Phys Chem 98:8245. doi:10.1021/j100084a048
- 42.
Stier PM, Barnett CF (1956) Charge exchange cross sections of hydrogen ions in gases. Phys Rev 103:896. doi:10.1103/PhysRev.103.896
- 43.
Barnett CF, Reynolds HK (1958) Charge exchange cross sections of hydrogen particles in gases at high energies. Phys Rev 109:355. doi:10.1103/PhysRev.109.355
- 44.
Williams JF (1967) Measurement of charge-transfer cross sections for 0.25- to 2.5-MeV protons and hydrogen atoms incident upon hydrogen and helium gases. Phys Rev 157:97. doi:10.1103/PhysRev.157.97
- 45.
Welsh LM, Berkner KH, Kaplan SN, Pyle RV (1967) Cross sections for electron capture by fast protons in H2, He, N2, and Ar. Phys Rev 158:85. doi:10.1103/PhysRev.158.85
- 46.
Jamorski C, Foresman JB, Thilgen C, Lüthi HP (2002) Assessment of time-dependent density-functional theory for the calculation of critical features in the absorption spectra of a series of aromatic donor–acceptor systems. J Chem Phys 116:8761. doi:10.1063/1.1465404
- 47.
Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin bacteriochlorin and bacteriochlorophyll spheroidene complexes. J Am Chem Soc 126:4007. doi:10.1021/ja039556n
- 48.
Dreuw A, Weisman JL, Head-Gordon M (2003) Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange. J Chem Phys 119:2943. doi:10.1063/1.1590951
Acknowledgments
We acknowledge many discussions with A. Delcorte and O. Restrepo related with secondary ion mass spectrometry, and with Y. Popov concerning the proton–Helium collision. This work was supported by the Communauté française de Belgique, through the Action de Recherche Concertée 07/12-003 “Nanosystèmes hybrides metal-organiques”, and by the FRS-FNRS Belgium (FRFC Grant 2.4.589.09.F).
Author information
Affiliations
Corresponding author
Additional information
Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium.
Rights and permissions
About this article
Cite this article
Avendaño-Franco, G., Piraux, B., Grüning, M. et al. Time-dependent density functional theory study of charge transfer in collisions. Theor Chem Acc 131, 1289 (2012). https://doi.org/10.1007/s00214-012-1289-5
Received:
Accepted:
Published:
Keywords
- Time-dependent density functional theory
- Charge transfer
- Collisions