Theoretical Chemistry Accounts

, 131:1265 | Cite as

On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution

Regular Article

Abstract

The free radical scavenging activity of protocatechuic acid has been studied in aqueous and lipid solutions, using the density functional theory. It was found to be a moderately good protector in non-polar environments (lipid), while in aqueous solution it is predicted to be an excellent peroxyl radical scavenger. In such media, the pH has an important role in the free radical scavenging activity of protocatechuic acid. At physiological pH, after the first peroxyl radical is scavenged, and in the presence of a good electron-donor species, such as the superoxide radical anion, the latter is consumed and protocatechuic acid is regenerated. This means that, under such conditions, it has the ability of scavenging several radical equivalents, two per cycle. An equivalent cyclic process can be assumed as possible also for other scavengers with the catechol moiety. If this assumption is confirmed, the role of compounds with a catechol moiety as free radical scavengers might be even more important that what has been assumed so far.

Keywords

Kinetics Hydrolysis Water-assisted Acid–base equilibria Peroxy radicals 

Supplementary material

214_2012_1265_MOESM1_ESM.pdf (248 kb)
Supplementary material 1 (PDF 247 kb)

References

  1. 1.
    Cabrini L, Barzanti V, Cipollone M, Fiorentini D, Grossi G, Tolomelli B, Zambonin L, Landi L (2001) J Agric Food Chem 49:6026–6032CrossRefGoogle Scholar
  2. 2.
    Madrera RR, Lobo AP, Valles BS (2006) J Agric Food Chem 54:120–124CrossRefGoogle Scholar
  3. 3.
    Slimestad R, Fossen T, Vagen IM (2007) J Agric Food Chem 55:10067–10080CrossRefGoogle Scholar
  4. 4.
    Ma YQ, Ye XQ, Fang ZX, Chen JC, Xu GH, Liu DH (2008) J Agric Food Chem 56:5682–5690CrossRefGoogle Scholar
  5. 5.
    Pacheco-Palencia LA, Mertens-Talcott S, Talcott ST (2008) J Agric Food Chem 56:4631–4636CrossRefGoogle Scholar
  6. 6.
    Lin C-Y, Huang C-S, Huang C-Y, Yin M-C (2009) J Agric Food Chem 57:6661–6667CrossRefGoogle Scholar
  7. 7.
    Vari R, D’Archivio M, Filesi C, Carotenuto S, Scazzocchio B, Santangelo C, Giovannini C, Masella R (2011) J Nutr Biochem 22:409–417CrossRefGoogle Scholar
  8. 8.
    Vitaglione P, Donnarumma G, Napolitano A, Galvano F, Gallo A, Scalfi L, Fogliano V (2007) J Nutr 137:2043–2048Google Scholar
  9. 9.
    Chao CY, Yin MC (2009) Foodborne Pathog Dis 6:201–206CrossRefGoogle Scholar
  10. 10.
    Stagos D, Kazantzoglou G, Theofanidou D, Kakalopoulou G, Magiatis P, Mitaku S, Kouretas D (2006) Mutat Res 609:165–175CrossRefGoogle Scholar
  11. 11.
    Kwon YI, Vattem DA, Shetty K (2006) Asia Pac J Clin Nutr 15:107–118Google Scholar
  12. 12.
    Yen GC, Hsieh CL (2000) J Agric Food Chem 48:3431–3436CrossRefGoogle Scholar
  13. 13.
    Liu CL, Wang JM, Chu CY, Cheng MT, Tseng TH (2002) Food Chem Toxicol 40:635–641CrossRefGoogle Scholar
  14. 14.
    Shi GF, An LJ, Jiang B, Guan S, Bao YM (2006) Neurosci Lett 403:206–210CrossRefGoogle Scholar
  15. 15.
    Hyogo A, Kobayashi T, del Saz EG, Seguchi H (2010) Int J Morphol 28:911–920CrossRefGoogle Scholar
  16. 16.
    Zhang X, Shi G-F, Liu X-Z, An L-J, Guan S (2011) Cell Biochem Funct 29:342–347CrossRefGoogle Scholar
  17. 17.
    Boyd NF, McGuire V (1991) Free Radic Biol Med 10:185–190CrossRefGoogle Scholar
  18. 18.
    Nelson RL (1992) Free Radic Biol Med 12:161–168CrossRefGoogle Scholar
  19. 19.
    Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakuunen T (1994) Int J Cancer 56:379–382CrossRefGoogle Scholar
  20. 20.
    Willcox JK, Ash SL, Catignani GL (2004) Crit Rev Food Sci Nutr 44:275–295CrossRefGoogle Scholar
  21. 21.
    Riemersma RA, Wood DA, Macintyre CCA, Elton RA, Gey KF, Oliver MF (1991) Lancet 337:1–5CrossRefGoogle Scholar
  22. 22.
    Salonen JT, Nyyssoner K, Korpela H, Tuomilehto J, Seppanen R, Salonen R (1992) Circulation 86:803–811CrossRefGoogle Scholar
  23. 23.
    Street DA, Comstock G, Salkeld R, Klag M (1994) Circulation 90:1154–1161CrossRefGoogle Scholar
  24. 24.
    Stephens NG, Parsons A, Schofield PM, Kelly F, Cheesman K, Mitchinson MJ, Brown MJ (1996) Lancet 347:781–786CrossRefGoogle Scholar
  25. 25.
    Panasenko OM, Nova TV, Azizova OA, Vladimirov YA (1991) Free Radic Biol Med 10:137–148CrossRefGoogle Scholar
  26. 26.
    Steinberg D (1991) Circulation 84:1421–1425CrossRefGoogle Scholar
  27. 27.
    Janero DR (1991) Free Radic Biol Med 11:129–144CrossRefGoogle Scholar
  28. 28.
    Hodis HN, Mack WJ, LaBree L, Cashin-Hemphill L, Sevanian A, Johnson R, Azen S (1995) J Am Med Assoc 273:1849–1854CrossRefGoogle Scholar
  29. 29.
    Braekke K, Harsem NK, Staff AC (2006) Pediatr Res 60:560–564CrossRefGoogle Scholar
  30. 30.
    Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu O, Durak I (2007) Gynecol Obstet Invest 64:187–192CrossRefGoogle Scholar
  31. 31.
    Hracsko Z, Orvos H, Novak Z, Pal A, Varga IS (2008) Redox Rep 13:11–16CrossRefGoogle Scholar
  32. 32.
    Christen Y (2000) Am J Clin Nutr 71:621S–629SGoogle Scholar
  33. 33.
    Halliwell B (2001) Drugs Aging 8:685–716CrossRefGoogle Scholar
  34. 34.
    Butterfield DA (2002) Free Radic Res 36:1307–1313CrossRefGoogle Scholar
  35. 35.
    Hatzipanayioti D, Karaliota A, Kamariotaki M, Aletras V, Petropouleas P (2006) Chem Phys 325:341–350CrossRefGoogle Scholar
  36. 36.
    Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T (2002) J Agric Food Chem 50:5468–5471CrossRefGoogle Scholar
  37. 37.
    Saito S, Okamoto Y, Kawabata J (2003) Biosci Biotechnol Biochem 67:1578–1579CrossRefGoogle Scholar
  38. 38.
    Saito S, Kawabata J (2005) Tetrahedron 61:8101–8108CrossRefGoogle Scholar
  39. 39.
    Saito S, Kawabata J (2006) Helv Chim Acta 89:1395–1407CrossRefGoogle Scholar
  40. 40.
    Saito S, Gao H, Kawabata J (2006) Helv Chim Acta 89:821–831CrossRefGoogle Scholar
  41. 41.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  42. 42.
    Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396CrossRefGoogle Scholar
  43. 43.
    Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, Zapata E, Alarcon G (2009) J Phys Org Chem 22:971–977CrossRefGoogle Scholar
  44. 44.
    Galano A, Alvarez-Idaboy JR (2009) Org Lett 11:5114–5117CrossRefGoogle Scholar
  45. 45.
    Black G, Simmie JM (2010) J Comput Chem 31:1236–1248Google Scholar
  46. 46.
    Furuncuoglu T, Ugur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823–1835CrossRefGoogle Scholar
  47. 47.
    Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095–1099CrossRefGoogle Scholar
  48. 48.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 02. Gaussian, WallingfordGoogle Scholar
  49. 49.
    Okuno Y (1997) Chem Eur J 3:210–218CrossRefGoogle Scholar
  50. 50.
    Benson SW (1960) The foundations of chemical kinetics, chap XV. McGraw-Hill, New York, pp 504–508Google Scholar
  51. 51.
    Eyring H (1935) J Chem Phys 3:107–115CrossRefGoogle Scholar
  52. 52.
    Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894CrossRefGoogle Scholar
  53. 53.
    Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2664–2682CrossRefGoogle Scholar
  54. 54.
    Truhlar DG, Kuppermann A (1971) J Am Chem Soc 93:1840–1851CrossRefGoogle Scholar
  55. 55.
    Marcus RA (1964) Annu Rev Phys Chem 15:155–196CrossRefGoogle Scholar
  56. 56.
    Marcus RA (1993) Rev Mod Phys 65:599–610CrossRefGoogle Scholar
  57. 57.
    Marcus RA (1997) Pure Appl Chem 69:13–30CrossRefGoogle Scholar
  58. 58.
    Collins FC, Kimball GE (1949) J Colloid Sci 4:425–437CrossRefGoogle Scholar
  59. 59.
    Smoluchowski M (1917) Z Phys Chem 92:129–168Google Scholar
  60. 60.
    Truhlar DG (1985) J Chem Ed 62:104–106CrossRefGoogle Scholar
  61. 61.
    Einstein A (1905) Ann Phys (Leipzig) 17:549–560Google Scholar
  62. 62.
    Stokes GG (1903) Mathematical and physical papers, vol 3. Cambridge University Press, Cambridge, p 55Google Scholar
  63. 63.
    Young D (2001) Computational chemistry: a practical guide for applying techniques to real world problems. Wiley, New York, pp 227–228Google Scholar
  64. 64.
    Allodi MA, Kirschner KN, Shields GC (2008) J Phys Chem A 112:7064–7071CrossRefGoogle Scholar
  65. 65.
    Erdemgil FZ, Sanli S, Sanli N, Ozkan G, Barbosa J, Guiteras J, Beltran JL (2007) Talanta 72:489–496CrossRefGoogle Scholar
  66. 66.
    Belcastro M, Marino T, Russo N, Toscano M (2006) Theor Chem Acc 115:361–369CrossRefGoogle Scholar
  67. 67.
    Leopoldini M, Russo N, Chiodo S, Toscano M (2006) J Agric Food Chem 54:6343–6351CrossRefGoogle Scholar
  68. 68.
    Leopoldini M, Rondinelli F, Russo N, Toscano M (2010) J Agric Food Chem 58:8862–8871CrossRefGoogle Scholar
  69. 69.
    Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306CrossRefGoogle Scholar
  70. 70.
    Perez-Gonzalez A, Galano A (2011) J Phys Chem B 115:1306–1314CrossRefGoogle Scholar
  71. 71.
    Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662–7670CrossRefGoogle Scholar
  72. 72.
    Galano A (2011) Theor Chem Acc 130:51–60CrossRefGoogle Scholar
  73. 73.
    León-Carmona JR, Galano A (2011) J Phys Chem B 115:4538–4546CrossRefGoogle Scholar
  74. 74.
    Terpinc P, Abramovic H (2010) Food Chem 121:366–371CrossRefGoogle Scholar
  75. 75.
    Sies H (1997) Exp Physiol 82:291–295Google Scholar
  76. 76.
    Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  77. 77.
    Itagaki S, Kurokawa T, Nakata C, Saito Y, Oikawa S, Kobayashi M, Hirano T, Iseki K (2009) Food Chem 114:466–471CrossRefGoogle Scholar
  78. 78.
    Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H (2006) Food Sci Technol Res 12:173–177CrossRefGoogle Scholar
  79. 79.
    Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H (2006) J Agric Food Chem 54:6069–6074CrossRefGoogle Scholar
  80. 80.
    De Grey AND (2002) J DNA Cell Biol 21:251–257CrossRefGoogle Scholar
  81. 81.
    Rose RC, Bode AM (1993) FASEB J 7:1135–1142Google Scholar
  82. 82.
    Galano A, Tan DX, Reiter RJ (2011) J Pineal Res 51:1–16CrossRefGoogle Scholar
  83. 83.
    Hatzipanayioti D, Petropouleas P (2010) Spectrochim Acta A 75:997–1007CrossRefGoogle Scholar
  84. 84.
    Bielski BH (1978) J Photochem Photobiol 28:645–649CrossRefGoogle Scholar
  85. 85.
    Galano A, Francisco-Márque M (2009) J Phys Chem B 113:11338–11345CrossRefGoogle Scholar
  86. 86.
    Martínez A, Vargas R, Galano A (2010) Theor Chem Acc 127:595–603CrossRefGoogle Scholar
  87. 87.
    Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A (2011) J Phys Chem B 115:12234–12246CrossRefGoogle Scholar
  88. 88.
    Galano A, Francisco-Márquez M, Alvarez-Idaboy JR (2011) J Phys Chem B 115:8590–8596CrossRefGoogle Scholar
  89. 89.
    Galano A, Alvarez-Idaboy JR, Francisco-Marquez M, Medina ME (2012) Theor Chem Acc 131:1173CrossRefGoogle Scholar
  90. 90.
    Galano A, Alvarez-Idaboy JR, Francisco-Marquez M (2011) J Phys Chem B 115:13101–13109CrossRefGoogle Scholar
  91. 91.
    Galano A, Francisco-Marquez M, Alvarez-Idaboy JR (2011) Phys Chem Chem Phys 13:11199–11205CrossRefGoogle Scholar
  92. 92.
    Martínez A, Galano A, Vargas R (2011) J Phys Chem B 115:12591–12598CrossRefGoogle Scholar
  93. 93.
    Galano A (2011) Phys Chem Chem Phys 13:7147–7157Google Scholar
  94. 94.
    Galano A, Francisco-Márquez M (2009) J Phys Chem B 113:16077–16081CrossRefGoogle Scholar
  95. 95.
    Galano A, Alvarez-Idaboy JR (2011) RSC Adv 1:1763–1771CrossRefGoogle Scholar
  96. 96.
    Laitinen HA, Harris WE (1975) Chemical analysis: an advanced text and reference, chap 11, 2nd edn. McGraw-Hill, New York, pp 189–216Google Scholar
  97. 97.
    Rojas A, Gonzalez I (1986) Anal Chim Acta 187:279–285CrossRefGoogle Scholar
  98. 98.
    Rojas-Hernández A, Ramírez MT (1991) Anal Chim Acta 246:435–442CrossRefGoogle Scholar
  99. 99.
    Harvey D (2000) Modern analytical chemistry, chap 9. McGraw-Hill, New York, pp 273–367Google Scholar
  100. 100.
    Evans G, Uri N (1949) Trans Faraday Soc 45:224–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.División de Ciencias Básicas e Ingeniería, Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico

Personalised recommendations