Skip to main content
Log in

On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The free radical scavenging activity of protocatechuic acid has been studied in aqueous and lipid solutions, using the density functional theory. It was found to be a moderately good protector in non-polar environments (lipid), while in aqueous solution it is predicted to be an excellent peroxyl radical scavenger. In such media, the pH has an important role in the free radical scavenging activity of protocatechuic acid. At physiological pH, after the first peroxyl radical is scavenged, and in the presence of a good electron-donor species, such as the superoxide radical anion, the latter is consumed and protocatechuic acid is regenerated. This means that, under such conditions, it has the ability of scavenging several radical equivalents, two per cycle. An equivalent cyclic process can be assumed as possible also for other scavengers with the catechol moiety. If this assumption is confirmed, the role of compounds with a catechol moiety as free radical scavengers might be even more important that what has been assumed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Scheme 4
Fig. 3
Scheme 5
Fig. 4

Similar content being viewed by others

References

  1. Cabrini L, Barzanti V, Cipollone M, Fiorentini D, Grossi G, Tolomelli B, Zambonin L, Landi L (2001) J Agric Food Chem 49:6026–6032

    Article  CAS  Google Scholar 

  2. Madrera RR, Lobo AP, Valles BS (2006) J Agric Food Chem 54:120–124

    Article  Google Scholar 

  3. Slimestad R, Fossen T, Vagen IM (2007) J Agric Food Chem 55:10067–10080

    Article  CAS  Google Scholar 

  4. Ma YQ, Ye XQ, Fang ZX, Chen JC, Xu GH, Liu DH (2008) J Agric Food Chem 56:5682–5690

    Article  CAS  Google Scholar 

  5. Pacheco-Palencia LA, Mertens-Talcott S, Talcott ST (2008) J Agric Food Chem 56:4631–4636

    Article  CAS  Google Scholar 

  6. Lin C-Y, Huang C-S, Huang C-Y, Yin M-C (2009) J Agric Food Chem 57:6661–6667

    Article  CAS  Google Scholar 

  7. Vari R, D’Archivio M, Filesi C, Carotenuto S, Scazzocchio B, Santangelo C, Giovannini C, Masella R (2011) J Nutr Biochem 22:409–417

    Article  CAS  Google Scholar 

  8. Vitaglione P, Donnarumma G, Napolitano A, Galvano F, Gallo A, Scalfi L, Fogliano V (2007) J Nutr 137:2043–2048

    CAS  Google Scholar 

  9. Chao CY, Yin MC (2009) Foodborne Pathog Dis 6:201–206

    Article  CAS  Google Scholar 

  10. Stagos D, Kazantzoglou G, Theofanidou D, Kakalopoulou G, Magiatis P, Mitaku S, Kouretas D (2006) Mutat Res 609:165–175

    Article  CAS  Google Scholar 

  11. Kwon YI, Vattem DA, Shetty K (2006) Asia Pac J Clin Nutr 15:107–118

    Google Scholar 

  12. Yen GC, Hsieh CL (2000) J Agric Food Chem 48:3431–3436

    Article  CAS  Google Scholar 

  13. Liu CL, Wang JM, Chu CY, Cheng MT, Tseng TH (2002) Food Chem Toxicol 40:635–641

    Article  CAS  Google Scholar 

  14. Shi GF, An LJ, Jiang B, Guan S, Bao YM (2006) Neurosci Lett 403:206–210

    Article  CAS  Google Scholar 

  15. Hyogo A, Kobayashi T, del Saz EG, Seguchi H (2010) Int J Morphol 28:911–920

    Article  Google Scholar 

  16. Zhang X, Shi G-F, Liu X-Z, An L-J, Guan S (2011) Cell Biochem Funct 29:342–347

    Article  Google Scholar 

  17. Boyd NF, McGuire V (1991) Free Radic Biol Med 10:185–190

    Article  CAS  Google Scholar 

  18. Nelson RL (1992) Free Radic Biol Med 12:161–168

    Article  CAS  Google Scholar 

  19. Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakuunen T (1994) Int J Cancer 56:379–382

    Article  CAS  Google Scholar 

  20. Willcox JK, Ash SL, Catignani GL (2004) Crit Rev Food Sci Nutr 44:275–295

    Article  CAS  Google Scholar 

  21. Riemersma RA, Wood DA, Macintyre CCA, Elton RA, Gey KF, Oliver MF (1991) Lancet 337:1–5

    Article  CAS  Google Scholar 

  22. Salonen JT, Nyyssoner K, Korpela H, Tuomilehto J, Seppanen R, Salonen R (1992) Circulation 86:803–811

    Article  CAS  Google Scholar 

  23. Street DA, Comstock G, Salkeld R, Klag M (1994) Circulation 90:1154–1161

    Article  CAS  Google Scholar 

  24. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheesman K, Mitchinson MJ, Brown MJ (1996) Lancet 347:781–786

    Article  CAS  Google Scholar 

  25. Panasenko OM, Nova TV, Azizova OA, Vladimirov YA (1991) Free Radic Biol Med 10:137–148

    Article  CAS  Google Scholar 

  26. Steinberg D (1991) Circulation 84:1421–1425

    Article  Google Scholar 

  27. Janero DR (1991) Free Radic Biol Med 11:129–144

    Article  CAS  Google Scholar 

  28. Hodis HN, Mack WJ, LaBree L, Cashin-Hemphill L, Sevanian A, Johnson R, Azen S (1995) J Am Med Assoc 273:1849–1854

    Article  CAS  Google Scholar 

  29. Braekke K, Harsem NK, Staff AC (2006) Pediatr Res 60:560–564

    Article  CAS  Google Scholar 

  30. Biri A, Bozkurt N, Turp A, Kavutcu M, Himmetoglu O, Durak I (2007) Gynecol Obstet Invest 64:187–192

    Article  CAS  Google Scholar 

  31. Hracsko Z, Orvos H, Novak Z, Pal A, Varga IS (2008) Redox Rep 13:11–16

    Article  CAS  Google Scholar 

  32. Christen Y (2000) Am J Clin Nutr 71:621S–629S

    CAS  Google Scholar 

  33. Halliwell B (2001) Drugs Aging 8:685–716

    Article  Google Scholar 

  34. Butterfield DA (2002) Free Radic Res 36:1307–1313

    Article  CAS  Google Scholar 

  35. Hatzipanayioti D, Karaliota A, Kamariotaki M, Aletras V, Petropouleas P (2006) Chem Phys 325:341–350

    Article  CAS  Google Scholar 

  36. Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T (2002) J Agric Food Chem 50:5468–5471

    Article  CAS  Google Scholar 

  37. Saito S, Okamoto Y, Kawabata J (2003) Biosci Biotechnol Biochem 67:1578–1579

    Article  CAS  Google Scholar 

  38. Saito S, Kawabata J (2005) Tetrahedron 61:8101–8108

    Article  CAS  Google Scholar 

  39. Saito S, Kawabata J (2006) Helv Chim Acta 89:1395–1407

    Article  CAS  Google Scholar 

  40. Saito S, Gao H, Kawabata J (2006) Helv Chim Acta 89:821–831

    Article  CAS  Google Scholar 

  41. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  43. Velez E, Quijano J, Notario R, Pabón E, Murillo J, Leal J, Zapata E, Alarcon G (2009) J Phys Org Chem 22:971–977

    Article  CAS  Google Scholar 

  44. Galano A, Alvarez-Idaboy JR (2009) Org Lett 11:5114–5117

    Article  CAS  Google Scholar 

  45. Black G, Simmie JM (2010) J Comput Chem 31:1236–1248

    CAS  Google Scholar 

  46. Furuncuoglu T, Ugur I, Degirmenci I, Aviyente V (2010) Macromolecules 43:1823–1835

    Article  CAS  Google Scholar 

  47. Zhao Y, Truhlar DG (2008) J Phys Chem A 112:1095–1099

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 02. Gaussian, Wallingford

  49. Okuno Y (1997) Chem Eur J 3:210–218

    Article  Google Scholar 

  50. Benson SW (1960) The foundations of chemical kinetics, chap XV. McGraw-Hill, New York, pp 504–508

  51. Eyring H (1935) J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  52. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  53. Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2664–2682

    Article  CAS  Google Scholar 

  54. Truhlar DG, Kuppermann A (1971) J Am Chem Soc 93:1840–1851

    Article  Google Scholar 

  55. Marcus RA (1964) Annu Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  56. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  57. Marcus RA (1997) Pure Appl Chem 69:13–30

    Article  CAS  Google Scholar 

  58. Collins FC, Kimball GE (1949) J Colloid Sci 4:425–437

    Article  CAS  Google Scholar 

  59. Smoluchowski M (1917) Z Phys Chem 92:129–168

    Google Scholar 

  60. Truhlar DG (1985) J Chem Ed 62:104–106

    Article  CAS  Google Scholar 

  61. Einstein A (1905) Ann Phys (Leipzig) 17:549–560

    CAS  Google Scholar 

  62. Stokes GG (1903) Mathematical and physical papers, vol 3. Cambridge University Press, Cambridge, p 55

    Google Scholar 

  63. Young D (2001) Computational chemistry: a practical guide for applying techniques to real world problems. Wiley, New York, pp 227–228

    Google Scholar 

  64. Allodi MA, Kirschner KN, Shields GC (2008) J Phys Chem A 112:7064–7071

    Article  CAS  Google Scholar 

  65. Erdemgil FZ, Sanli S, Sanli N, Ozkan G, Barbosa J, Guiteras J, Beltran JL (2007) Talanta 72:489–496

    Article  CAS  Google Scholar 

  66. Belcastro M, Marino T, Russo N, Toscano M (2006) Theor Chem Acc 115:361–369

    Article  CAS  Google Scholar 

  67. Leopoldini M, Russo N, Chiodo S, Toscano M (2006) J Agric Food Chem 54:6343–6351

    Article  CAS  Google Scholar 

  68. Leopoldini M, Rondinelli F, Russo N, Toscano M (2010) J Agric Food Chem 58:8862–8871

    Article  CAS  Google Scholar 

  69. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288–306

    Article  CAS  Google Scholar 

  70. Perez-Gonzalez A, Galano A (2011) J Phys Chem B 115:1306–1314

    Article  CAS  Google Scholar 

  71. Chiodo SG, Leopoldini M, Russo N, Toscano M (2010) Phys Chem Chem Phys 12:7662–7670

    Article  CAS  Google Scholar 

  72. Galano A (2011) Theor Chem Acc 130:51–60

    Article  CAS  Google Scholar 

  73. León-Carmona JR, Galano A (2011) J Phys Chem B 115:4538–4546

    Article  Google Scholar 

  74. Terpinc P, Abramovic H (2010) Food Chem 121:366–371

    Article  CAS  Google Scholar 

  75. Sies H (1997) Exp Physiol 82:291–295

    CAS  Google Scholar 

  76. Valko M, Rhodes CJ, Moncola J, Izakovic M, Mazur M (2006) Chem Biol Interact 160:1–40

    Article  CAS  Google Scholar 

  77. Itagaki S, Kurokawa T, Nakata C, Saito Y, Oikawa S, Kobayashi M, Hirano T, Iseki K (2009) Food Chem 114:466–471

    Article  CAS  Google Scholar 

  78. Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H (2006) Food Sci Technol Res 12:173–177

    Article  CAS  Google Scholar 

  79. Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H (2006) J Agric Food Chem 54:6069–6074

    Article  CAS  Google Scholar 

  80. De Grey AND (2002) J DNA Cell Biol 21:251–257

    Article  Google Scholar 

  81. Rose RC, Bode AM (1993) FASEB J 7:1135–1142

    CAS  Google Scholar 

  82. Galano A, Tan DX, Reiter RJ (2011) J Pineal Res 51:1–16

    Article  CAS  Google Scholar 

  83. Hatzipanayioti D, Petropouleas P (2010) Spectrochim Acta A 75:997–1007

    Article  Google Scholar 

  84. Bielski BH (1978) J Photochem Photobiol 28:645–649

    Article  CAS  Google Scholar 

  85. Galano A, Francisco-Márque M (2009) J Phys Chem B 113:11338–11345

    Article  CAS  Google Scholar 

  86. Martínez A, Vargas R, Galano A (2010) Theor Chem Acc 127:595–603

    Article  Google Scholar 

  87. Iuga C, Alvarez-Idaboy JR, Vivier-Bunge A (2011) J Phys Chem B 115:12234–12246

    Article  CAS  Google Scholar 

  88. Galano A, Francisco-Márquez M, Alvarez-Idaboy JR (2011) J Phys Chem B 115:8590–8596

    Article  CAS  Google Scholar 

  89. Galano A, Alvarez-Idaboy JR, Francisco-Marquez M, Medina ME (2012) Theor Chem Acc 131:1173

    Article  Google Scholar 

  90. Galano A, Alvarez-Idaboy JR, Francisco-Marquez M (2011) J Phys Chem B 115:13101–13109

    Article  CAS  Google Scholar 

  91. Galano A, Francisco-Marquez M, Alvarez-Idaboy JR (2011) Phys Chem Chem Phys 13:11199–11205

    Article  CAS  Google Scholar 

  92. Martínez A, Galano A, Vargas R (2011) J Phys Chem B 115:12591–12598

    Article  Google Scholar 

  93. Galano A (2011) Phys Chem Chem Phys 13:7147–7157

    Google Scholar 

  94. Galano A, Francisco-Márquez M (2009) J Phys Chem B 113:16077–16081

    Article  CAS  Google Scholar 

  95. Galano A, Alvarez-Idaboy JR (2011) RSC Adv 1:1763–1771

    Article  CAS  Google Scholar 

  96. Laitinen HA, Harris WE (1975) Chemical analysis: an advanced text and reference, chap 11, 2nd edn. McGraw-Hill, New York, pp 189–216

  97. Rojas A, Gonzalez I (1986) Anal Chim Acta 187:279–285

    Article  CAS  Google Scholar 

  98. Rojas-Hernández A, Ramírez MT (1991) Anal Chim Acta 246:435–442

    Article  Google Scholar 

  99. Harvey D (2000) Modern analytical chemistry, chap 9. McGraw-Hill, New York, pp 273–367

  100. Evans G, Uri N (1949) Trans Faraday Soc 45:224–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Laboratorio de Visualización y Cómputo Paralelo at UAM—Iztapalapa for the access to its computer facilities and project SEP-CONACyT 167491. Adriana Pérez-González acknowledges CONACyT for Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annia Galano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galano, A., Pérez-González, A. On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theor Chem Acc 131, 1265 (2012). https://doi.org/10.1007/s00214-012-1265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1265-0

Keywords

Navigation