Skip to main content
Log in

Theoretical study of chemosensor for fluoride anion and optical properties of the derivatives of diketopyrrolopyrrole

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The interactions between chemosensors, diketopyrrolopyrrole (DPP) derivatives, and different halides (F, Cl, and Br) anions have been theoretically investigated using DFT approaches. Theoretical investigations have been performed to explore the optical, electronic, charge transport, and stability properties of DPP derivatives as charge transport and/or luminescent materials. It turned out that the unique selectivity of DPP derivatives for F is ascribed to their ability of deprotonating the host sensors. The atoms in molecules theory and natural bond orbitals charge analysis of the complexes consisting of DPP derivatives and X (X = F, Cl, and Br) confirm that the protons are almost completely abstracted by F. The study of substituent effects suggests that all the substituted derivatives are expected to be promising candidates for ratiometric fluorescent fluoride chemosensors as well as chromogenic chemosensors. Furthermore, the derivatives with biphenyl, 2-(thiophen-2-yl)thiophene, and benzo[d]thieno[3,2-b]thiophene fragments are expected to be promising luminescent materials. In addition, derivatives with 2-(thiophen-2-yl)thiophene and 4,9-dihydrothieno[3,4-b]quinoxaline fragments can serve as good electron transport materials for OLEDs as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bianchi A, Bowman-James K, Garcia-Espana E (1997) Supramolecular chemistry of anions. Wiley-VCH, New York

    Google Scholar 

  2. Deng Y, Chen Y, Cao D, Liu Z, Li G (2010) Sensors Actuat B Chem 149:165

    Article  Google Scholar 

  3. Rhee HW, Choi SJ, Yoo SH, Jang YO, Park HH, Hun HP, Pinto RM, Cameselle JC, Sandoval FJ, Roje S, Han K, Chung DS, Suh J, Hong JI (2009) J Am Chem Soc 131:10107

    Article  CAS  Google Scholar 

  4. Li JQ, Li XY (2007) J Phys Chem A 111:13061

    Article  CAS  Google Scholar 

  5. Hagihara S, Tanaka H, Matile S (2008) J Am Chem Soc 130:5656

    Article  CAS  Google Scholar 

  6. Yoon J, Kim SK, Singh NJ, Kim KS (2006) Chem Soc Rev 35:355

    Article  CAS  Google Scholar 

  7. Gale PA (2006) Acc Chem Res 39:465

    Article  CAS  Google Scholar 

  8. Callan JF, de Silva AP, Magri DC (2005) Tetrahedron 61:8551

    Article  CAS  Google Scholar 

  9. Martinez-Manez R, Sancanon F (2003) Chem Rev 103:4419

    Article  CAS  Google Scholar 

  10. Wu CY, Chen MS, Lin CA, Lin SC, Sun SS (2006) Chem Eur J 12:2263

    Article  CAS  Google Scholar 

  11. Evans LS, Gale PA, Light ME, Quesada R (2006) Chem Commun 965

  12. Coll C, Martínez-Máñez R, Dolores MM, Sancenón F, Soto J (2007) Angew Chem Int Ed 46:1675

    Article  CAS  Google Scholar 

  13. Cametti M, Rissanen K (2009) Chem Commun 2809

  14. Kirk KL (1991) Biochemistry of the halogens and inorganic halides. Plenum Press, New York

    Book  Google Scholar 

  15. Zhang SW, Swager TM (2003) J Am Chem Soc 125:3420

    Article  CAS  Google Scholar 

  16. Kim SK, Yoon J (2002) Chem Commun 770

  17. Peng X, Wu Y, Fan J, Tian M, Han K (2005) J Org Chem 70:10524

    Article  CAS  Google Scholar 

  18. Li Z, Zhang J (2006) Chem Phys 331:159

    Article  CAS  Google Scholar 

  19. Thiagarajan V, Ramamurthy P (2007) J Lumin 126:886

    Article  CAS  Google Scholar 

  20. Kim SK, Bok JH, Bartsch RA, Lee JY, Kim JS (2005) Org Lett 7:4839

    Article  CAS  Google Scholar 

  21. Chow CF, Chiu BKW, Lam MHW, Wong WY (2003) J Am Chem Soc 125:7802

    Article  CAS  Google Scholar 

  22. Yu F, Li P, Li G, Zhao G, Chu T, Han K (2011) J Am Chem Soc 133:11030

    Article  CAS  Google Scholar 

  23. Li GY, Chu T (2011) Phys Chem Chem Phys 13:20766

    Article  CAS  Google Scholar 

  24. Li G, Zhao G, Liu Y, Han K, He G (2010) J Comput Chem 31:1759

    Article  Google Scholar 

  25. Li Z, Zhang J (2006) Chem Phys 331:159

    Article  CAS  Google Scholar 

  26. Hao Z, Iqbal A (1997) Chem Soc Rev 26:203

    Article  CAS  Google Scholar 

  27. Mizuguchi J, Giller G, Baeriswyl E (1994) J Appl Phys 75:514

    Article  CAS  Google Scholar 

  28. Baheti A, Tyagi P, Thomas KRJ, Hsu YC, Lin JT (2009) J Phys Chem C 113:8541

    Article  CAS  Google Scholar 

  29. Zhou EJ, Cong JZ, Yamakawa S, Wei QS, Nakamura M, Tajima K, Yang CH, Hashimoto K (2010) Macromolecules 43:2873

    Article  CAS  Google Scholar 

  30. Zhu Y, Rabindranath AR, Beyerlein T, Tieke B (2007) Macromolecules 40:6981

    Article  CAS  Google Scholar 

  31. Wienk MM, Turbiez M, Gilot J, Janssen RAJ (2008) Adv Mater 20:2556

    Article  CAS  Google Scholar 

  32. Thompson BC, Fréchet JMJ (2008) Angew Chem Int Ed 47:58

    Article  CAS  Google Scholar 

  33. Tamayo AB, Walker B, Nguyen TQ (2008) J Phys Chem C 112:11545

    Article  CAS  Google Scholar 

  34. Jiang Y, Wang Y, Hua J, Qian S, Tian H (2009) J Polym Sci Part A 47:4400

    Article  CAS  Google Scholar 

  35. Guo EQ, Ren PH, Zhang YL, Zhang HC, Yang WJ (2009) Chem Commun 5859

  36. Yanagisawa H, Mizuguchi J, Aramakil S, Sakai Y (2008) Jpn J Appl Phys 47:4728

    Article  CAS  Google Scholar 

  37. Qu Y, Hua J, Tian H (2010) Org Lett 12:3320

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  39. Jin R, Ahmad Irfan A (2012) Comput Theor Chem 986:93

    Article  CAS  Google Scholar 

  40. Jin R, Zhang J (2011) Chem Phys 380:17

    Article  CAS  Google Scholar 

  41. Jin R (2011) J Fluorine Chem 132:907

    Article  CAS  Google Scholar 

  42. Jin R, Zhang J (2009) Theor Chem Acc 124:225

    Article  CAS  Google Scholar 

  43. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024

    Article  CAS  Google Scholar 

  44. Cornard JP, Lapouge C (2006) J Phys Chem A 110:7159

    Article  CAS  Google Scholar 

  45. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  46. AIM2000 designed by Friedrich Biegler-König, University of applied sciences Bielefeld Germany (2000)

  47. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  48. Marcus RA (1993) Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  49. Marcus RA (1964) Annu Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  50. Wen S, Li A, Song J, Deng W, Han K, Goddard WA III (2009) J Phys Chem B 113:8813

    Article  CAS  Google Scholar 

  51. Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205

    Article  CAS  Google Scholar 

  52. Troisi A, Orlandi G (2006) J Phys Chem A 110:4065

    Article  CAS  Google Scholar 

  53. Lemaur V, Steel M, Beljonne D, Brédas JL, Cornil J (2005) J Am Chem Soc 127:6077

    Article  CAS  Google Scholar 

  54. Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:2339

    Article  CAS  Google Scholar 

  55. Köse ME, Mitchell WJ, Kopidakis N, Chang CH, Shaheen SE, Kim K, Rumbles GJ (2007) Am Chem Soc 129:14257

    Article  Google Scholar 

  56. Cheung DL, Troisi A (2010) J Phys Chem C 114:20479

    Article  CAS  Google Scholar 

  57. Martinelli NG, Idé J, Sánchez-Carrera RS, Coropceanu V, Brédas JL, Ducasse L, Castet F, Cornil J, Beljonne D (2010) J Phys Chem C 114:20678

    Article  CAS  Google Scholar 

  58. McMahon DP, Trois A (2010) J Phys Chem Lett 1:941

    Article  CAS  Google Scholar 

  59. Norton JE, Brédas JL (2008) J Am Chem Soc 130:12377

    Article  CAS  Google Scholar 

  60. Köse ME, Long H, Kim K, Graf P, Ginley D (2010) J Phys Chem A 114:4388

    Article  Google Scholar 

  61. Sakanoue K, Motoda M, Sugimoto M, Sakaki S (1999) J Phys Chem A 103:5551

    Article  CAS  Google Scholar 

  62. Berlin YA, Hutchison GR, Rempala P, Ratner MA, Michl J (2003) J Phys Chem A 107:3970

    Article  CAS  Google Scholar 

  63. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas JL (2002) J Am Chem Soc 124:7918

    Article  CAS  Google Scholar 

  64. Malagoli M, Brédas JL (2000) Chem Phys Lett 327:13

    Article  CAS  Google Scholar 

  65. Lin BC, Cheng CP, You ZQ, Hsu CP (2005) J Am Chem Soc 127:66

    Article  CAS  Google Scholar 

  66. Steiner T, Desiraju GR (1998) Chem Commun 891

  67. Steiner T (2002) Angew Chem Int Ed 41:48

    Article  CAS  Google Scholar 

  68. Amendola V, Esteban-Gómez D, Fabbrizzi L, Licchelli M (2006) Acc Chem Res 39:343

    Article  CAS  Google Scholar 

  69. Sidorkin VF, Doronina EP, Chipanina NN, Aksamentova TN, Shainyan BA (2008) J Phys Chem A 112:6227

    Article  CAS  Google Scholar 

  70. Nagaraju M, Narahari Sastry G (2011) J Mol Model 17:1801

    Article  CAS  Google Scholar 

  71. Karabıyık H, Sevinçek R, Petek H, Aygün M (2011) J Mol Model 7:1295

    Article  Google Scholar 

  72. Abramov YA (1997) Acta Crystallogr A 53:264

    Article  Google Scholar 

  73. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  74. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  75. Nakanishi W, Hayashi S, Narahara K (2008) J Phys Chem A 112:13593

    Article  CAS  Google Scholar 

  76. Forés M, Duran M, Solà M, Adamowicz L (1999) J Phys Chem A 103:4413

    Article  Google Scholar 

  77. Zhao GJ, Han KL (2012) Acc Chem Res 45:404

    Article  CAS  Google Scholar 

  78. Zhao GJ, Liu JY, Zhou LC, Han KL (2007) J Phys Chem B 111:8940

    Article  CAS  Google Scholar 

  79. Pearson RG (1985) J Am Chem Soc 107:6801

    Article  CAS  Google Scholar 

  80. Start MS (1997) J Phys Chem A 101:8296

    Article  Google Scholar 

Download references

Acknowledgments

The author received financial supports from the Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2011ZD02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifa Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, R. Theoretical study of chemosensor for fluoride anion and optical properties of the derivatives of diketopyrrolopyrrole. Theor Chem Acc 131, 1260 (2012). https://doi.org/10.1007/s00214-012-1260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1260-5

Keywords

Navigation