Skip to main content
Log in

Smoothed Gaussian molecular fields: an evaluation of molecular alignment problems

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Several smoothed Gaussian-based descriptors used in a molecular superposition algorithm are presented. One descriptor, as detailed in a previous work (Leherte in J Comput Chem 27:1800–1816, 2006), is the full electron density approximated through the promolecular atomic shell approximation (PASA) (Amat and Carbó-Dorca in J Chem Inf Comput Sci 40:1188–1198, 2000). Herein, we additionally present a new descriptor, that is, the charge density of a molecule calculated via the Poisson equation. The Coulomb potential as approximated by Good et al. (J Chem Inf Comput Sci 32:188–191, 1992) and atom-based functions such as hydrogen bond donor or acceptor properties, lipophilicity as detailed in the work of Totrov (Chem Biol Drug Des 71:15–27, 2008) were also considered. A Monte Carlo/Simulated Annealing superposition method is applied to a set of six families of drug molecules, that is, elastase inhibitors, ligands of endothiapepsins, trypsins, thermolysins, p38 MAP kinases, and rhinovirus, all of them already reported in the literature, for discussing superposition problems. The results show that the descriptor selection can be guided by the nature of the interactions expected to occur between the drug molecules and their receptor. They also emphasize the particular efficiency of the PASA descriptor for molecules characterized by significant shape properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maggiora GM, Shanmugasundaram V (2004) Methods in molecular biology. In: Bajorath J (ed) Chemoinformatics: concepts, methods, and tools for drug discovery, vol 275. Humana Press, Totowa

    Google Scholar 

  2. Bultinck P, Gironés X, Carbó-Dorca R (2005) In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry, vol 21. Wiley-VCH, Hoboken

    Google Scholar 

  3. Carbó-Dorca R, Besalú E, Mercado LD (2011) Communications on quantum similarity, Part 3: a geometric-quantum similarity molecular superposition algorithm. J Comput Chem 32:582–599

    Article  Google Scholar 

  4. Connolly ML (1996) NetSci’s science center: computational chemistry 1996. http://www.netsci.org/Science/Compchem/feature14.html. Accessed 11 Jan 2012

  5. Good AC, Richards WG (1993) Rapid evaluation of shape similarity using Gaussian functions. J Chem Inf Comput Sci 33:112–116

    Article  CAS  Google Scholar 

  6. Grant JA, Pickup BT (1995) A Gaussian description of molecular shape. J Phys Chem 99:3503–3510

    Article  CAS  Google Scholar 

  7. Grant JA, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem 17:1653–1666

    Article  CAS  Google Scholar 

  8. Grant JA, Pickup BT (1997) Gaussian shape methods. Comput Simul Biomol Syst 3:150–176

    Google Scholar 

  9. Nicholls A, MacCuish NE, MacCuish JD (2004) Variable selection and model validation of 2D and 3D molecular descriptors. J Comput Aided Mol Des 18:451–474

    Article  CAS  Google Scholar 

  10. Haigh JA, Pickup BT, Grant JA, Nicholls A (2005) Small molecules shape-fingerprints. J Chem Inf Model 45:673–684

    Article  CAS  Google Scholar 

  11. Maggiora GM, Rohrer DC, Mestres J (2001) Comparing protein structures: a Gaussian-based approach to the three-dimensional structural similarity of proteins. J Mol Graph Model 19:168–178

    Article  CAS  Google Scholar 

  12. Mestres J, Rohrer DC, Maggiora GM (1997) MIMIC: a molecular-field matching program. Exploiting applicability of molecular similarity approaches. J Comput Chem 18:934–954

    Article  CAS  Google Scholar 

  13. Duncan BS, Olson A (1993) Shape analysis of molecular surfaces. Biopolymers 33:231–238

    Article  CAS  Google Scholar 

  14. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  Google Scholar 

  15. Totrov M (2008) Atomic property fields: generalized 3D pharmacophoric potential for automated ligand superposition, pharmacophore elucidation and 3D QSAR. Chem Biol Drug Des 71:15–27

    CAS  Google Scholar 

  16. Lemmen C, Lengauer T, Klebe G (1998) FLEXS: a method for fast flexible ligand superposition. J Med Chem 41:4502–4520

    Article  CAS  Google Scholar 

  17. Proschak E, Rupp M, Derksen S, Scneider G (2008) Shapelets: possibilities and limitations of shape-based virtual screening. J Comput Chem 29:108–114

    Article  CAS  Google Scholar 

  18. Chan SL, Labute P (2010) Training a scoring function for the alignment of small molecules. J Chem Inf Model 50:1724–1735

    Article  CAS  Google Scholar 

  19. Molecular Operating Environment (MOE), 2011.10 (2011) Chemical Computing Group Inc., Montreal

  20. Leherte L (2006) Similarity measures based on Gaussian-type promolecular electron density models: alignment of small rigid molecules. J Comput Chem 27:1800–1816

    Article  CAS  Google Scholar 

  21. Kostrowicki J, Piela L, Cherayil BJ, Scheraga HA (1991) Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard-Jones atoms. J Phys Chem 95:4113–4119

    Article  CAS  Google Scholar 

  22. Glick M, Robinson DD, Grant GH, Richards WG (2002) Identification of ligand binding sites on proteins using a multi-scale approach. J Amer Chem Soc 124:2337–2344

    Article  CAS  Google Scholar 

  23. Glick M, Grant GH, Richards WG (2002) Docking of flexible molecules using multiscale ligand representations. J Med Chem 45:4639–4646

    Article  CAS  Google Scholar 

  24. Leherte L (2001) Application of multiresolution analyses to electron density maps of small molecules: critical point representations for molecular superposition. J Math Chem 29:47–83

    Article  CAS  Google Scholar 

  25. Leherte L, Meurice N, Vercauteren DP (2005) Influence of conformation on the representation of small flexible molecules at low resolution: alignment of endothiapepsin ligands. J Comput Aided Mol Des 19:525–549

    Article  CAS  Google Scholar 

  26. Masek BB, Merchant A, Matthew JB (1993) Molecular skins: a new concept for quantitative shape matching of a protein with its small molecule mimics. Proteins 17:193–202

    Article  CAS  Google Scholar 

  27. Perkins TDJ, Mills JEJ, Dean PM (1995) Molecular surface-volume and property matching to superpose flexible dissimilar molecules. J Comput Aided Mol Des 9:479–490

    Article  CAS  Google Scholar 

  28. Poirrette AR, Artymiuk PJ, Rice DW, Willett P (1997) Comparison of protein surfaces using a genetic algorithm. J Comput Aided Mol Des 11:557–569

    Article  CAS  Google Scholar 

  29. Robinson DD, Lyne PD, Richards WG (2000) Partial molecular alignment via local structure analysis. J Chem Inf Comput Sci 40:503–512

    Article  CAS  Google Scholar 

  30. Klebe G, Mietzner T, Weber F (1994) Different approaches toward an automatic structural alignment of drug molecules: applications to sterol mimics, thrombin and thermolysin inhibitors. J Comput Aided Mol Des 8:751–778

    Article  CAS  Google Scholar 

  31. Vieth M, Hirst JD, Brooks CL III (1998) Do active site conformations of small ligands correspond to low free-energy solution structures? J Comput Aided Mol Des 12:563–572

    Article  CAS  Google Scholar 

  32. Chen Q, Higgs RE, Vieth M (2006) Geometric accuracy of three-dimensional molecular overlays. J Chem Inf Model 46:1996–2002

    Article  CAS  Google Scholar 

  33. Leherte L, Vercauteren DP (2011) Charge density distributions derived from smoothed electrostatic potential functions: design of protein reduced point charge models. J Comput Aided Mol Des 25:913–930

    Article  CAS  Google Scholar 

  34. Good AC, Hodgkin EE, Richards WG (1992) Utilization of Gaussian functions for the rapid evaluation of molecular similarity. J Chem Inf Comput Sci 32:188–191

    Article  CAS  Google Scholar 

  35. Amat L, Carbó-Dorca R (2000) Molecular electronic density fitting using elementary Jacobi rotations under atomic shell approximation. J Chem Inf Comput Sci 40:1188–1198

    Article  CAS  Google Scholar 

  36. Amat L, Carbó-Dorca R (1997) Quantum similarity measures under atomic shell approximation: first order density fitting using elementary Jacobi rotations. J Comput Chem 18:2023–2039. http://iqc.udg.es/cat/similarity/ASA/funcset.html. Accessed 12 Jan 2012

    Google Scholar 

  37. Hart RK, Pappu RV, Ponder JW (2000) Exploring the similarities between potential smoothing and simulated annealing. J Comput Chem 21:531–552

    Article  CAS  Google Scholar 

  38. Robert D, Carbó-Dorca R (1998) A formal comparison between molecular quantum similarity measures and indices. J Chem Inf Comput Sci 38:469–475

    Article  CAS  Google Scholar 

  39. Carbó-Dorca R, Mercado LD (2010) Commentaries on quantum similarity (1): density gradient quantum similarity. J Comput Chem 31:2195–2212

    Article  Google Scholar 

  40. Maggiora GM, Petke JD, Mestres J (2002) A general analysis of field-based molecular similarity indices. J Math Chem 31:251–270

    Article  CAS  Google Scholar 

  41. Cooper DL, Allan NL (1995) In: Carbó R (ed) Molecular similarity and reactivity: from quantum chemical to phenomenological approaches. Kluwer, Dordrecht

    Google Scholar 

  42. Leherte L (2004) Hierarchical analysis of promolecular full electron-density distributions: description of protein structure fragments. Acta Crystallogr Sect D 60:1254–1265

    Article  Google Scholar 

  43. Leherte L, Vercauteren DP (2009) Coarse point charge models for proteins from smoothed molecular electrostatic potentials. J Chem Theory Comput 5:3279–3298

    Article  CAS  Google Scholar 

  44. Good AC, Peterson SJ, Richards WG (1993) QSAR’s from similarity matrices. Technique validation and application in the comparison of different similarity evaluation methods. J Med Chem 36(1993):2929–2937

    Article  CAS  Google Scholar 

  45. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242. http://www.rcsb.org/pdb. Accessed 12 Jan 2012

    Google Scholar 

  46. Pedretti A, Villa L, Vistoli G (2002) VEGA: a versatile program to convert, handle, and visualize molecular structure on Windows-based PCs. J Mol Graph 21:47–49

    Article  CAS  Google Scholar 

  47. Pedretti A, Villa L, Vistoli G (2004) VEGA—an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18:16–173. http://www.vegazz.net/. Accessed 12 Jan 2012

  48. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity: a rapid access to atomic charges. Tetrahedron 36:3219–3222

    Article  CAS  Google Scholar 

  49. Marsili M, Gasteiger J (1981) π Charge distribution from molecular topology and π orbital electronegativity. Croat Chem Acta 53:601–614

    CAS  Google Scholar 

  50. Bailey D, Cooper JB (1994) A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica. Protein Sci 3:2129–2143

    Article  CAS  Google Scholar 

  51. Turk D, Stürzebecher J, Bode W (1991) Geometry of binding of the Nα-tosylated piperidines of m-amidino-, p-amidino- and p-guanidino phenylalanine to thrombin and trypsin—X-ray crystal structures of their trypsin complexes and modeling of their thrombin complexes. FEBS 287:133–138

    Article  CAS  Google Scholar 

  52. Holmes MA, Matthews BW (1981) Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis. Biochemistry 20:6912–6920

    Article  CAS  Google Scholar 

  53. Matthews BW (1988) Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res 21:333–340

    Article  CAS  Google Scholar 

  54. Tronrud DE, Monzingo AF, Matthews BW (1986) Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin. Eur J Biochem 157:261–268

    Article  CAS  Google Scholar 

  55. Gresh N, Roques BP (1997) Thermolysin-inhibitor binding: effect of the His231 → Ala mutation on the relative affinities of thiolate versus phosphoramidate inhibitors—A model theoretical investigation incorporating a continuum reaction field hydration model. Biopolymers 41:145–164

    Article  CAS  Google Scholar 

  56. Tervo AJ, Rönkkö T, Nyrönen TH, Poso A (2005) BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications. J Med Chem 48:4076–4086

    Article  CAS  Google Scholar 

  57. Stelmach JE, Liu L, Patel SB, Pivnichny JV, Scapin G, Singh S, Hop CECA, Wang Z, Strauss JR, Cameron PM, Nichols EA, O’Keefe SJ, O’Neill EA, Schmatz DM, Schwartz CD, Thompson CM, Zaller DM, Doherty JB (2003) Design and synthesis of potent, orally bioavailable dihydroquinazolinone inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 13:277–280

    Article  CAS  Google Scholar 

  58. Shewchuk L, Hassell A, Wisely B, Rocque W, Holmes W, Veal J, Kuyper LF (2000) Binding mode of the 4-anilinoquinazoline class of protein kinase inhibitor: X-ray crystallographic studies of 4-anilinoquinazolines bound to cyclin-dependent kinase 2 and p38 kinase. J Med Chem 43:133–138

    Article  CAS  Google Scholar 

  59. Wang Z, Canagarajah BJ, Boehm JC, Kassicà S, Cobb MH, Young PR, Abdel-Meguid S, Adams JL, Goldsmith EJ (1998) Structural basis of inhibitor selectivity in MAP kinases. Structure 6:1117–1128

    Article  CAS  Google Scholar 

  60. Gill AL, Frederickson M, Cleasby A, Woodhead SJ, Carr MG, Woodhead AJ, Walker MT, Congreve MS, Devine LA, Tisi D, O’Reilly M, Seavers LCA, Davis DJ, Curry J, Anthony R, Padova A, Murray CW, Carr RAE, Jhoti H (2005) Identification of novel p38α MAP kinase inhibitors using fragment-based lead generation. J Med Chem 48:414–426

    Article  CAS  Google Scholar 

  61. Tamayo N, Liao L, Goldberg M, Powers D, Tudor YY, Yu V, Wong LM, Henkle B, Middleton S, Syed R, Harvey T, Jang G, Hungate R, Dominguez C (2005) Design and synthesis of potent pyridazine inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 15:2409–2413

    Article  CAS  Google Scholar 

  62. Perry JJP, Harris RM, Moiani D, Olson AJ, Tainer JA (2009) p38α MAP kinase C-terminal domain binding pocket characterized by crystallographic and computational analyses. J Mol Biol 391:1–11

    Article  CAS  Google Scholar 

  63. Trejo A, Arzeno H, Browner M, Chanda S, Cheng S, Comer DD, Dalrymple SA, Dunten P, Lafargue J, Lovejoy B, Freire-Moar J, Lim J, Mcintosh J, Miller J, Papp E, Reuter D, Roberts R, Sanpablo F, Saunders J, Song K, Villasenor A, Warren SD, Welch M, Weller P, Whiteley PE, Zeng L, Goldstein DM (2003) Design and synthesis of 4-azaindoles as inhibitors of p38 MAP kinase. J Med Chem 46:4702–4713

    Article  CAS  Google Scholar 

  64. Hadfield AT, Oliveira MA, Kim KH, Minor I, Kremer MJ, Heinz BA, Shepard D, Pevear DC, Rueckert RR, Rossmann MG (1995) Structural studies on human rhinovirus 14 drug-resistant compensation mutants. J Mol Biol 253:61–73

    Article  CAS  Google Scholar 

  65. Mestres J, Rohrer DC, Maggiora GM (1999) A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors. J Comput Aided Mol Des 13:79–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their comments. They also acknowledge L. Piela for fruitful discussions, the support of the F.R.S.–F.R.F.C. (convention no. 2.4.617.07.F), and the ‘‘Facultés Universitaires Notre-Dame de la Paix’’ (FUNDP) for the use of the Interuniversity Scientific Computing Facility (ISCF) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Leherte.

Additional information

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 65 kb)

Supplementary material 2 (DOCX 40 kb)

Supplementary material 3 (DOCX 30 kb)

Supplementary material 4 (DOCX 50 kb)

Supplementary material 5 (DOCX 56 kb)

Supplementary material 6 (DOCX 37 kb)

Supplementary material 7 (DOCX 22 kb)

Supplementary material 8 (DOCX 21 kb)

Supplementary material 9 (DOCX 23 kb)

Supplementary material 10 (DOCX 24 kb)

Supplementary material 11 (DOCX 23 kb)

Supplementary material 12 (DOCX 23 kb)

Supplementary material 13 (DOCX 23 kb)

Supplementary material 14 (DOCX 23 kb)

Supplementary material 15 (DOCX 25 kb)

Supplementary material 16 (DOCX 26 kb)

Supplementary material 17 (DOCX 25 kb)

Supplementary material 18 (DOCX 25 kb)

Supplementary material 19 (DOCX 22 kb)

Supplementary material 20 (DOCX 22 kb)

Supplementary material 21 (DOCX 23 kb)

Supplementary material 22 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leherte, L., Vercauteren, D.P. Smoothed Gaussian molecular fields: an evaluation of molecular alignment problems. Theor Chem Acc 131, 1259 (2012). https://doi.org/10.1007/s00214-012-1259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1259-y

Keywords

Navigation