Skip to main content
Log in

Electronic spectra of EuF studied by a four-component relativistic configuration interaction method

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structure of the EuF molecule is investigated using a four-component relativistic general open-shell configuration interaction method. All low-lying excited states below 3.0 eV are characterized by applying the f-shell Omega decomposition method, which was proposed by the present authors to analyze the electronic spectra of GdF. The ground states are ninefold degenerate and are expressed in the present terminology as X 4[(4f 7)(6s 1)]Ω. The superscript (4) here denotes the maximum Ω value. The electronic angular momentum projected onto the molecular axis (Ω) runs from 4 to −4, and the electronic configuration is represented symbolically by the gross atomic orbital populations of the Eu moiety (4f)7(6s)1. These features are consistent with the term X 9Σ that is assigned experimentally in the LS-coupling scheme. Similarly, the sevenfold degenerate first excited states are characterized as a 3[(4f 7)(6s 1)]Ω, corresponding to the experimentally assigned a 7Σ term. Dmitriev et al. observed three excited states Ω2, Ω1, and Ω3 above a 7Σ term. The three calculated excited states, A 4[(4f  7)1/2(6p 1)3/2 + …]2, A 4[(4f  7)−1/2(6p 1)3/2 + …]1, and B 4[(4f  7)5/2(6p 1+5d 1)1/2 + …]3, are, respectively, the most plausible identifications of the Ω2, Ω1, and Ω3 given by Dmitriev et al. These three states have large oscillator strengths with the X and a families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cotton S (2006) Lanthanide and actinide chemistry. John Wiley and Sons, Chichester

    Book  Google Scholar 

  2. Bünzli J-CG (2010) Chem Rev 110:2729–2755

    Article  Google Scholar 

  3. Binnemans K (2009) Chem Rev 109:4283–4374

    Article  CAS  Google Scholar 

  4. Viswanathan S, Kovacs Z, Green KN, Ratnakar SJ, Sherry AD (2010) Chem Rev 110:2960–3018

    Article  CAS  Google Scholar 

  5. Field RW (1982) Ber Bunsenges Phys 86:771–779

    CAS  Google Scholar 

  6. Schall H, Dulick M, Field RW (1987) J Chem Phys 87:2898–2912

    Article  CAS  Google Scholar 

  7. Kaledin LA, Linton C, Clarke TE, Field RW (1992) J Mol Spectrosc 154:417–426

    Article  CAS  Google Scholar 

  8. Kaledin LA, McCord JE, Heaven MC (1992) J Mol Spectrosc 170:166–171

    Article  Google Scholar 

  9. Schamps J, Benchheikh M, Barthelat J-C, Field RW (1993) J Chem Phys 103:8004–8013

    Article  Google Scholar 

  10. Kaledin LA, Bloch JC, McCarthy MC, Shenyavskaya EA, Field RW (1996) J Mol Spectrosc 176:148–161

    Article  CAS  Google Scholar 

  11. Kaledin AL, Heaven MC, Field RW, Kaledin LA (1996) J Mol Spectrosc 179:310–319

    Article  CAS  Google Scholar 

  12. Ren J, Whangbo M-H, Dai D, Li L (1998) J Chem Phys 108:8479–8485

    Article  CAS  Google Scholar 

  13. Dolg M, Stoll H (1989) Theor Chim Acta 75:369–387

    Article  CAS  Google Scholar 

  14. Titov AV, Mosyagin NS, Ezhov VF (1996) Phys Rev Lett 77:5346–5349

    Article  CAS  Google Scholar 

  15. Lesar A, Muri G, Hodošček M (1998) J Phys Chem A 102:1170–1176

    Article  CAS  Google Scholar 

  16. Cao X, Liu W, Dolg M (2002) Sci China, Ser B 45:91–96

    Article  CAS  Google Scholar 

  17. Fahs H, Allouche AR, Korek M (2002) J Chem Phys 117:3715–3720

    Article  CAS  Google Scholar 

  18. Wang SG, Schwarz WHE (1995) J Phys Chem 99:11687–11695

    Article  CAS  Google Scholar 

  19. Heiberg H, Gropen O, Laerdahl JK, Swang O, Wahlgren U (2003) Theor Chem Acc 110:118–125

    Article  CAS  Google Scholar 

  20. Hülsen M, Dolg M, Link P, Ruschewitz U (2011) Theor Chem Acc 129:367–379

    Article  Google Scholar 

  21. Quiney HM, Skaane H, Grant IP (1998) J Phys B 31:L85–L96

    Article  CAS  Google Scholar 

  22. Laerdahl JK, Fægri K Jr, Visscher L, Saue T (1998) J Chem Phys 109:10806–10817

    Article  CAS  Google Scholar 

  23. Wasada-Tsutsui Y, Watanabe Y, Tatewaki H (2009) Int J Quantum Chem 109:1874–1885

    Article  CAS  Google Scholar 

  24. Liu W, Dolg M, Li L (1998) J Chem Phys 108:2886–2895

    Article  CAS  Google Scholar 

  25. Dolg M, Liu W, Kalvoda S (2000) Int J Quantum Chem 76:359–370

    Article  CAS  Google Scholar 

  26. Moriyama H, Watanabe Y, Nakano H, Tatewaki H (2008) J Phys Chem A 112:2683–2692

    Article  CAS  Google Scholar 

  27. Moriyama H, Tatewaki H, Watanabe Y, Nakano H (2009) Int J Quantum Chem 109:1898–1904

    Article  CAS  Google Scholar 

  28. Moriyama H, Watanabe Y, Nakano H, Yamamoto S, Tatewaki H (2010) J Chem Phys 132:124310 (9 pp)

    Article  Google Scholar 

  29. Wasada-Tsutsui Y, Watanabe Y, Tatewaki H (2007) J Phys Chem A111:8877–8883

    Google Scholar 

  30. Tatewaki H, Yamamoto S, Watanabe Y, Nakano H (2008) J Chem Phys 128:214901 (8 pp)

    Article  Google Scholar 

  31. Tatewaki H, Matsuoka O (1997) J Chem Phys 106:4558–4565

    Article  CAS  Google Scholar 

  32. Tatewaki H, Watanabe Y, Yamamoto S, Miyoshi E (2006) J Chem Phys 125:044309 (9 pp)

    Article  Google Scholar 

  33. Yamamoto S, Tatewaki H, Saue T (2008) J Chem Phys 129:244505 (8 pp)

    Article  Google Scholar 

  34. Yamamoto S, Tatewaki H (2011) J Chem Phys 134:164310 (11 pp)

    Article  Google Scholar 

  35. Yamamoto S, Tatewaki H (2012) Comput Theoret Chem 980:37–43

    Article  CAS  Google Scholar 

  36. Visser O, Visscher L, Aerts PJC, Nieuwpoort WC (1992) J Chem Phys 96:2910–2919

    Article  CAS  Google Scholar 

  37. Zmbov KF, Margrave JL (1967) J Inorg Nucl Chem 29:59–63

    Article  CAS  Google Scholar 

  38. Kleinschmidt PD, Lau KH, Hildenbrand DL (1981) J Chem Phys 74:653–660

    Article  CAS  Google Scholar 

  39. Dmitriev YN, Kaledin LA, Kobylyansky AI, Kulikov AN, Shenyavskaya EA, Gurvich LV (1987) Acta Physica Hungarica 61:51–54

    CAS  Google Scholar 

  40. Gurvich LV, Dmitriev YuN, Kaledin LA, Kobylyanskii AI, Kulikov AN, Shenyavskaya EA (1989) Bull Acad Sci USSR (Phys Ser) 53:75–79

    Google Scholar 

  41. Kaledin LA, Heaven MC, Field RW (1999) J Mol Spectrosc 193:285–292

    Article  CAS  Google Scholar 

  42. Koga T, Tatewaki H, Matsuoka O (2001) J Chem Phys 115:3561–3565. See also http://www.nsc.nagoya-cu.ac.jp/~htatewak/english.html

    Google Scholar 

  43. Koga T, Tatewaki H, Matsuoka O (2002) J Chem Phys 117:7813–7814. See also http://www.nsc.nagoya-cu.ac.jp/~htatewak/english.html

    Google Scholar 

  44. Andzelm J, Kłobukowski M, Radio-Andzelm E, Sakai Y, Tatewaki H. (1984) In: Huzinaga S (ed) Gaussian basis sets for molecular calculations. Elsevier, Amsterdam

  45. Lee YS, McLean AD (1982) J Chem Phys 76:735–736

    Article  CAS  Google Scholar 

  46. Ishikawa Y, Binning RC Jr, Sando KM (1983) Chem Phys Lett 101:111–114

    Article  CAS  Google Scholar 

  47. Stanton RE, Havriliak S (1984) J Chem Phys 81:1910–1918

    Article  CAS  Google Scholar 

  48. Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207–224

    Article  CAS  Google Scholar 

  49. Jensen HJAa, Saue T, Visscher L et al (2004) DIRAC, a relativistic ab initio electronic structure program, Release DIRAC 04.0; http://dirac.chem.sdu.dk

  50. Huzinaga S, Arnau C (1971) J Chem Phys 54:1948–1951

    Article  CAS  Google Scholar 

  51. Bauschlicher CW Jr (1980) J Chem Phys 72:880–885

    Article  CAS  Google Scholar 

  52. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  53. Rösch N (1983) Chem Phys 80:1–5

    Article  Google Scholar 

  54. Martin WC, Zalubas R, Hagan L (1978) In Natl Stand Ref Data Ser, US Natl Bur Stand 60:199–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeyoshi Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, S., Tatewaki, H. & Moriyama, H. Electronic spectra of EuF studied by a four-component relativistic configuration interaction method. Theor Chem Acc 131, 1230 (2012). https://doi.org/10.1007/s00214-012-1230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1230-y

Keywords

Navigation