Skip to main content

Advertisement

Log in

Ab initio investigation of the structural stability and optical properties of low-density amorphous carbon doped with N, B, and Fe

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The addition of iron or boron and/or nitrogen, up to 20 %, to amorphous carbon with a density of about 2.0 gm/cm3 was studied using density functional theory. The bulk cohesive energy decreases with increasing iron, nitrogen, or boron concentration. The decrease is largest for iron and smallest for boron. The trends in the bulk moduli are consistent with the cohesive energies. The optical properties (absorbance and reflectivity) of the samples with nitrogen and/or boron added are very similar to those of the original amorphous carbon. Addition of iron results in larger, energy dependent, changes when compared with either boron or nitrogen. The effect of dopants on low-density amorphous carbon shows some differences with those for higher density amorphous carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bauschlicher CW, Lawson JW (2010) Chem Phys 374:77–82

    Article  CAS  Google Scholar 

  2. Galli G, Martin RM, Carr R, Parrinello M (1989) Phys Rev Lett 62:555

    Article  CAS  Google Scholar 

  3. Galli G, Martin RM, Carr R, Parrinello M (1990) Phys Rev B 42:7470

    Article  CAS  Google Scholar 

  4. Wang CZ, Ho KM (1994) Phys Rev B 50:12429

    Article  CAS  Google Scholar 

  5. Köhler Th, Frauenheim Th, Jungnickel G (1995) Phys Rev B 52:11837

    Article  Google Scholar 

  6. Marks NA, McKenzie DR, Pailthorpe BA, Bernasconi M, Parrinello M (1996) Phys Rev Lett 76:768

    Article  CAS  Google Scholar 

  7. Marks NA, McKenzie DR, Pailthorpe BA, Bernasconi M, Parrinello M (1996) Phys Rev B 54:9703

    Article  CAS  Google Scholar 

  8. De Vita A, Galli G, Canning A, Carr R (1996) Nature 379:523

    Article  CAS  Google Scholar 

  9. Dong J, Drabold DA (1998) Phys Rev B 57:15591

    Article  CAS  Google Scholar 

  10. Marks NA, Cooper NC, McKenzie DR, McCulloch DG, Bath P, Russo SP (2002) Phys Rev B 65:075411

    Article  Google Scholar 

  11. Robertson J (2002) Mat Sci Eng R 37:129

    Article  Google Scholar 

  12. Petersen T, Yarosky I, Snook I, McCulloch DG, Opletal G (2004) Carbon 42:2457

    Article  CAS  Google Scholar 

  13. Lawson JW, Srivastava D (2008) Phys Rev B 77:144209

    Article  Google Scholar 

  14. Makeev MA, Srivastava D (2010) J Chem Phys C 114:5709

    Article  CAS  Google Scholar 

  15. Kumagai T, Choi J, Izumi S, Kato T (2010) J Appl Phys 107:104307

    Article  Google Scholar 

  16. McKenzie DR (1996) Rep Prog Phys 59:1611

    Article  CAS  Google Scholar 

  17. Wan C, Zhang X, Zang X, Gao X, Tan X (2009) App Phys Lett 95:022105

    Article  Google Scholar 

  18. Yastrebov SG, Ivanov-Omskii VI, Kosobukin VA, Dumitrache F, Morosanu C (2004) Tech Phys Lett 30:995

    Article  CAS  Google Scholar 

  19. Chen JS, Lau SP, Chen GY, Sun Z, Li YJ, Tay BK, Chai JW (2001) Diam Rel Mat 10:2018

    Article  CAS  Google Scholar 

  20. Chen JS, Lau SP, Tay BK, Chen GY, Sun Z, Tan YY, Tan G (2001) J Appl Phys 89:7814

    Article  CAS  Google Scholar 

  21. Xiong Y, Xie Y, Li X, Li Z (2004) Carbon 42:1447

    Article  CAS  Google Scholar 

  22. Weich F, Widany J, Frauenheim Th (1997) Phys Rev Lett 78:3326

    Article  CAS  Google Scholar 

  23. Chen CW, Robertson J (1999) Carbon 37:839

    Article  CAS  Google Scholar 

  24. Lenardi C, Piseri P, Briois V, Bottani CE, Li Bassi A, Milani P (1999) J Appl Phys 85:7159

    Article  CAS  Google Scholar 

  25. Waidmann S, Knupfer M, Fink J, Kleinsorge B, Robertson J (2001) J Appl Phys 89:3783

    Article  CAS  Google Scholar 

  26. Merchant AR, McKenzie DR, McCulloch DG (2001) Phys Rev B 65:024208

    Article  Google Scholar 

  27. Zhang XW, Cheung WY, Ke N, Wong SP (2002) J Appl Phys 92:1242

    Article  CAS  Google Scholar 

  28. Messasalma AM, Mondio G, Neri F, Trusso S (2003) J Phys D 36:541

    Article  Google Scholar 

  29. Ferrari AC, Rodil SE, Robertson J (2003) Phys Rev B 67:155306

    Article  Google Scholar 

  30. de Sánchez N Alba, Carrosco C, Prieto P (2003) Phys B 337:318

    Article  Google Scholar 

  31. Rodil SE, Muhl S (2004) Diam Rel Mat 13:1521

    Article  CAS  Google Scholar 

  32. Wang XC, Wu P, Li ZQ, Jiang EY, Bai HL (2004) J Phys D 37:2127

    Article  CAS  Google Scholar 

  33. Houska J, Bilek MMM, Warschkow O, McKenzie DR, Vlcek J (2005) Phys Rev B 72:054204

    Article  Google Scholar 

  34. Titantah JT, Lamoen D (2006) Phys Stat Sol A 203:3191

    Article  CAS  Google Scholar 

  35. Valladares AA, Álvare-Ramírez F (2006) Phys Rev B 73:024206

    Article  Google Scholar 

  36. Abrasonis G, Gago G, Vinnichenko M, Kreissig U, Kolitsch A, Möller W (2006) Phys Rev B 73:125427

    Article  Google Scholar 

  37. Titantah JT, Lamoen D (2007) Diam Rel Mat 16:581

    Article  CAS  Google Scholar 

  38. Han J, Gao W, Zhu J, Meng S, Zheng W (2007) Phys Rev B 75:155418

    Article  Google Scholar 

  39. Lau DWM, McCulloch DG, Taylor MB, Partridge JG, McKenzie DR, Marks NA, Teo EHT, Tay BK (2008) Phys Rev Lett 100:176101

    Article  CAS  Google Scholar 

  40. Kleinsorge B, Ilie A, Chhowalla M, Fukarek W, Milne WI, Robertson J (1998) Diam Rel Mat 7:472

    Article  CAS  Google Scholar 

  41. Gambirasio A, Bernasconi M (1999) Phys Rev B 60:12007

    Article  CAS  Google Scholar 

  42. Dai Y, Yan Y, Wang J, Sun B, He X, Shen H (2005) J Appl Phys 98:013525

    Article  Google Scholar 

  43. Tan M, Zhu J, Han J, Gao W, Niu L, Lu J (2007) Diam Rel Mat 16:1739

    Article  CAS  Google Scholar 

  44. Tan M, Zhu J, Han J, Gao W, Liu A, Han X (2008) Mat Res Bull 43:453

    Article  CAS  Google Scholar 

  45. Sikora A, Berkesse A, Bourgeois O, Garden J-L, Guerret-Piécourt C, Rouzaud J-N, Loir A-S, Garrelie G, Donnet C (2009) Solid State Sci 11:1738

    Article  CAS  Google Scholar 

  46. Kalijadis A, Jovanović Z, Laušević M, Laušević Z (2011) Carbon 49:2671

    Article  CAS  Google Scholar 

  47. Gajdos̄ M, Hummer K, Kresse G, Furthmüller J, Bechstedt F (2006) Phys Rev B 73:045112

    Article  Google Scholar 

  48. Baroni S, Resta R (1986) Phys Rev B 33:7017

    Article  CAS  Google Scholar 

  49. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mat Sci 36:354

    Article  Google Scholar 

  50. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  51. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  52. Kresse G, Furthmüller J (1996) Comput Mat Sci 6:15

    Article  CAS  Google Scholar 

  53. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  54. Perdew JP, Wang Y (1991) Phys Rev B 45:13244

    Article  Google Scholar 

  55. Kresse G, Joubert J (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  56. Yin MT, Cohen ML (1984) Phys Rev B 29:6996

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bauschlicher Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauschlicher, C.W., Lawson, J.W. Ab initio investigation of the structural stability and optical properties of low-density amorphous carbon doped with N, B, and Fe. Theor Chem Acc 131, 1228 (2012). https://doi.org/10.1007/s00214-012-1228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1228-5

Keywords

Navigation