Skip to main content
Log in

Methods of continuous translation of the origin of the current density revisited

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

An Erratum to this article was published on 30 December 2012

Abstract

Approaches to the calculation of magnetizability and nuclear magnetic shieldings in a molecule, based on continuous translation of the origin of the magnetic field-induced electronic current density, are reviewed. The connections among apparently unrelated philosophies (Geertsen propagator methods, Keith-Bader continuous set of gauge transformations, and analytical reformulation by Lazzeretti, Malagoli, and Zanasi) are emphasized, and a unitary theoretical scheme is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is the first reference in which the reinterpretation of the GIAO acronym for gauge-including-atomic-orbitals has been proposed, see footnote 6, p. 5047

References

  1. van Vleck JH (1932) The theory of electric and magnetic susceptibilities. Oxford University Press, Oxford

    Google Scholar 

  2. Ramsey NF (1950) Phys Rev 78:699

    Article  CAS  Google Scholar 

  3. Ramsey NF (1951) Phys Rev 83:540

    Article  CAS  Google Scholar 

  4. Ramsey NF (1952) Phys Rev 86:243

    Article  CAS  Google Scholar 

  5. Hirschfelder JO, Byers-Brown W, Epstein ST (1964) Adv Quantum Chem 1:255 (references therein)

    Google Scholar 

  6. Jackson JD (1999) Classical electrodynamics. 3rd edn. Wiley, New York, pp 175–178

    Google Scholar 

  7. Epstein ST (1974) The variation method in quantum chemistry. Academic Press, New York

    Google Scholar 

  8. Epstein ST (1973) J Chem Phys 58:1592

    Article  CAS  Google Scholar 

  9. Sambe H (1973) J Chem Phys 59:555

    Article  CAS  Google Scholar 

  10. Landau LD, Lifshitz EM (1979) The classical theory of fields, 4th revised english edition. Pergamon Press, Oxford

    Google Scholar 

  11. Arrighini GP, Maestro M, Moccia R (1968) J Chem Phys 49:882

    Article  CAS  Google Scholar 

  12. Arrighini GP, Maestro M, Moccia R (1970) J Chem Phys 52:6411

    Article  CAS  Google Scholar 

  13. Arrighini G, Maestro M, Moccia R (1970) Chem Phys Lett 7:351

    Article  CAS  Google Scholar 

  14. Lazzeretti P, Malagoli M, Zanasi R (1991) Chem Phys 150:173

    Article  CAS  Google Scholar 

  15. Lazzeretti P (2003) Electric and magnetic properties of molecules. In: Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chapter 3. Wiley, Chichester, pp 53–145

  16. Hansen AE, Bouman TD (1985) J Chem Phys 82:5035

    Google Scholar 

  17. London F (1937) J Phys Radium 8:397 (7ème Série)

    Google Scholar 

  18. DALTON (2008) An electronic structure program, release 2.0, 2005 (http://www.kjemi.uio.no/software/dalton/)

  19. Frisch MJ, Trucks GW et al (2003) Gaussian 2003, revision B.05. Gaussian, Inc., Pittsburgh

  20. Stanton JF, Gauss J, Harding ME, Szalay PG (2010) CFOUR, coupled-cluster techniques for computational chemistry (http://www.cfour.de)

  21. Gauss J (2002) J Chem Phys 116:4773

    Article  CAS  Google Scholar 

  22. Geertsen J (1989) J Chem Phys 90:4892

    Article  Google Scholar 

  23. Geertsen J (1991) Chem Phys Lett 179:479

    Article  CAS  Google Scholar 

  24. Geertsen J (1992) Chem Phys Lett 188:326

    Article  CAS  Google Scholar 

  25. Lazzeretti P, Malagoli M, Zanasi R (1994) Chem Phys Lett 220:299

    Article  CAS  Google Scholar 

  26. Smith CM, Amos RD, Handy NC (1992) Mol Phys 77:381

    Article  CAS  Google Scholar 

  27. Keith TA, Bader RFW (1993) Chem Phys Lett 210:223

    Article  CAS  Google Scholar 

  28. Keith TA, Bader RFW (1993) J Chem Phys 99:3669

    Article  CAS  Google Scholar 

  29. Keith TA, Bader RFW (1996) Can J Chem 74:185

    Article  CAS  Google Scholar 

  30. Coriani S, Lazzeretti P, Malagoli M, Zanasi R (1994) Theor Chim Acta 89:181

    Article  CAS  Google Scholar 

  31. Steiner E, Fowler PW (2001) J Phys Chem A 105:9553

    Article  CAS  Google Scholar 

  32. Steiner E, Fowler PW (2001) J Chem Soc Chem Comm 2220

  33. Steiner E, Fowler PW, Havenith RWA (2002) J Phys Chem A 106:7048

    Article  CAS  Google Scholar 

  34. Steiner E, Soncini A, Fowler PW (2006) J Phys Chem A 110:12882

    Article  CAS  Google Scholar 

  35. Steiner E, Fowler PW (2004) Phys Chem Chem Phys 6:261

    Article  CAS  Google Scholar 

  36. Zanasi R, Lazzeretti P, Malagoli M, Piccinini F (1995) J Chem Phys 102:7150

    Article  CAS  Google Scholar 

  37. Zanasi R (1996) J Chem Phys 105:1460

    Article  CAS  Google Scholar 

  38. Lazzeretti P, Zanasi R (1996) Int J Quantum Chem 60:249

    Article  CAS  Google Scholar 

  39. Lazzeretti P (1989) Chem Phys 134:269

    Article  CAS  Google Scholar 

  40. Lazzeretti P (1987) Adv Chem Phys 75:507

    Article  Google Scholar 

  41. Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, London

    Google Scholar 

  42. Olsen J, Jorgensen P (1985) J Chem Phys 82:3235

    Article  CAS  Google Scholar 

  43. McWeeny R (1962) Phys Rev 126:1028

    Article  Google Scholar 

  44. McWeeny R (1969) Quantum mechanics: methods and basic applications. Pergamon Press, Oxford

    Google Scholar 

  45. McWeeny R (1989) Methods of molecular quantum mechanics. Academic Press, London

    Google Scholar 

  46. Gell-Mann M (1956) Nuovo Cimento Suppl IV:848

    Article  Google Scholar 

  47. Ramsey NF (1953) Phys Rev 91:303

    Article  CAS  Google Scholar 

  48. Lazzeretti P, Zanasi R (1980) J Chem Phys 72:6768

    Article  CAS  Google Scholar 

  49. Lazzeretti P, Zanasi R (1977) Int J Quantum Chem 12:93

    Article  CAS  Google Scholar 

  50. Lazzeretti P, Malagoli M, Zanasi R (1991) Chem Phys 150:173

    Article  CAS  Google Scholar 

  51. Lazzeretti P (2000) Ring currents. In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 36, Elsevier, Amsterdam, pp 1–88

    Google Scholar 

  52. Condon EU (1937) Rev Mod Phys 9:432

    Article  CAS  Google Scholar 

  53. Lazzeretti P, Zanasi R, Cadioli B (1977) J Chem Phys 67:382

    Article  CAS  Google Scholar 

  54. Sauer SPA, Oddershede J (1993) Correlated and Gauge invariant calculations of nuclear shielding constants, volume 386 of NATO ASI series C. Kluwer, Dordrecht

    Google Scholar 

  55. Sauer SPA, Paidarová I, Oddershede J (1994) Mol Phys 81:87

    Article  CAS  Google Scholar 

  56. Sauer SPA, Oddershede J (1993) Correlated and gauge invariant calculations of nuclear shielding constants. In: Tossell JA (eds) Nuclear magnetic shieldings and molecular structure, volume 386 of NATO ASI series C, Kluwer, Dordrecht, pp 351–365

    Chapter  Google Scholar 

  57. Sauer SPA, Paidarová I, Oddershede J (1994) Theor Chim Acta 88:351

    Article  CAS  Google Scholar 

  58. Sauer SPA (2011) Molecular electromagnetism: a computational chemistry approach. Oxford University Press, Oxford

    Google Scholar 

  59. Faglioni F, Ligabue A, Pelloni S, Soncini A, Lazzeretti P (2004) Chem Phys 304:289

    Article  CAS  Google Scholar 

  60. Ligabue A, Sauer SPA, Lazzeretti P (2003) J Chem Phys 118:6830

    Article  CAS  Google Scholar 

  61. Ligabue A, Sauer SPA, Lazzeretti P (2007) J Chem Phys 126:154111

    Article  Google Scholar 

  62. Cuesta IG, Marin JS, de Meras AS, Pawlowski F, Lazzeretti P (2010) Phys Chem Chem Phys 12:6163

    Article  Google Scholar 

  63. Lazzeretti P (2004) Phys Chem Chem Phys 6:217

    Article  CAS  Google Scholar 

  64. Ligabue A, Pincelli U, Lazzeretti P, Zanasi R (1999) J Am Chem Soc 121:5513

    Article  CAS  Google Scholar 

  65. Lazzeretti P, Malagoli M, Zanasi R (1995) J Chem Phys 102:9619

    Article  Google Scholar 

  66. Pelloni S, Lazzeretti P (2008) J Chem Phys 128:194305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lazzeretti.

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazzeretti, P. Methods of continuous translation of the origin of the current density revisited. Theor Chem Acc 131, 1222 (2012). https://doi.org/10.1007/s00214-012-1222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1222-y

Keywords

Navigation