Skip to main content
Log in

Tuning of the anion–π interaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this manuscript, we report an ab initio theoretical study (RI-MP2/aug-cc-pVDZ) that deals with the effect of having different electron acceptor molecules interacting with the aromatic moiety (s-triazine) on the anion–π interaction strength. Depending on the type and number of interacting molecules, a wide range of complexation energies can be obtained, and therefore, a tuning of the interaction strength can be adjusted. In addition, cooperativity effects between the anion–π and a variety of other noncovalent and convalent interactions are analyzed and compared. We have used Bader’s theory of “atoms-in-molecules” to demonstrate that the electron density computed at the bond critical point that emerges upon complexation can be used not only as a measure of bond order but also as a measure of cooperativity and interplay between the noncovalent interactions that coexist in the same complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Cartesian coordinates of the RI-MP2/aug-cc-pVDZ optimized structures of all compounds and complexes are available for download from the Theoretical Chemistry Accounts supplementary material website: http://www.springer.com.

References

  1. Schneider H-J (2009) Angew Chem Int Ed 48:3924

    Article  CAS  Google Scholar 

  2. Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210

    Article  CAS  Google Scholar 

  3. Dougherty DA (1996) Science 271:163

    Article  CAS  Google Scholar 

  4. Kim KS, Tarakeshwar P, Lee (2000) J Y. Chem Rev 100:4145

    Article  CAS  Google Scholar 

  5. Lee EC, Kim D, Jureèka P, Tarakeshwar P, Hobza P, Kim KS (2007) J Phys Chem A 111:3446

    Article  CAS  Google Scholar 

  6. Reddy AS, Sastry GN (2005) J Phys Chem A 109:8893

    Article  CAS  Google Scholar 

  7. Cerný J, Hobza P (2007) Phys Chem Chem Phys 9:5291

    Article  Google Scholar 

  8. Rappé AK, Bernstein ER (2000) J Phys Chem A 104:6117

    Article  Google Scholar 

  9. Hesselmann A, Jansen G, Schütz M (2006) J Am Chem Soc 128:11730

    Article  CAS  Google Scholar 

  10. Piacenza M, Grimme S (2005) Chem Phys Chem 6:1554

    Article  CAS  Google Scholar 

  11. Ma JC, Dougherty DA (1997) Chem Rev 97:1303

    Article  CAS  Google Scholar 

  12. Gallivan JP, Dougherty DA (1999) Proc Natl Acad Sci USA 96:9459

    Article  CAS  Google Scholar 

  13. Gokel GW, Wall SLD, Meadows ES (2000) Eur J Org Chem 2967

  14. Gokel GW, Barbour LJ, Wall SLD, Meadows ES (2001) Coord Chem Rev 222:127

    Article  CAS  Google Scholar 

  15. Gokel GW, Barbour LJ, Ferdani R, Hu J (2002) Acc Chem Res 35:878

    Article  CAS  Google Scholar 

  16. Hunter CA, Singh J, Thorton JM (1991) J Mol Biol 218:837

    Article  CAS  Google Scholar 

  17. Kumpf RA, Dougherty DA (1993) Science 261:1708

    Article  CAS  Google Scholar 

  18. Heginbotham L, Lu Z, Abramson T, Mackinnon R (1994) Biophys J 66:1061

    Article  CAS  Google Scholar 

  19. Mascal M, Armstrong A, Bartberger M (2002) J Am Chem Soc 124:6274

    Article  CAS  Google Scholar 

  20. Alkorta I, Rozas I, Elguero J (2002) J Am Chem Soc 124:8593

    Article  CAS  Google Scholar 

  21. Quiñonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Angew Chem Int Ed 41:3389

    Article  Google Scholar 

  22. Frontera A, Quiñonero D, Deyà PM (2011) WIREs Comput Mol Sci 1:440

    Article  CAS  Google Scholar 

  23. Rosokha YS, Lindeman SV, Rosokha SV, Kochi JK (2004) Angew Chem Int Ed 43:4650

    Article  CAS  Google Scholar 

  24. Han B, Lu JJ, Kochi JK (2008) Cryst Growth Des 8:1327

    Article  CAS  Google Scholar 

  25. Hoog P, Gamez P, Mutikainen H, Turpeinen U, Reedijk J (2004) Angew Chem Int Ed 43:5815

    Article  Google Scholar 

  26. Estarellas C, Rotger MC, Capó M, Quiñonero D, Frontera A, Costa A, Deyà PM (2009) Org Lett 11:1987

    Article  CAS  Google Scholar 

  27. Mascal M, Yakovlev I, Nikitin EB, Fettinger JC (2007) Angew Chem Int Ed 46:8782

    Article  CAS  Google Scholar 

  28. Chifotides HT, Schottel BL, Dunbar KR (2010) Angew Chem Int Ed 49:7202

    Article  CAS  Google Scholar 

  29. Campos-Fernandez CS, Schottel BL, Chifotides HT, Bera JK, Bacsa J, Koomen JM, Russell DH, Dunbar KR (2005) J Am Chem Soc 127:12909

    Article  CAS  Google Scholar 

  30. Berryman OB, Hof F, Hynes MJ, Johnson DW (2006) Chem Commun 506

  31. Berryman OB, Sather AC, Hay BP, Meisner JS, Johnson DW (2008) J Am Chem Soc 130:10895

    Article  CAS  Google Scholar 

  32. Gil-Ramirez G, Escudero-Adan EC, Benet-Buchholz J, Ballester P (2008) Angew Chem Int Ed 47:4114

    Article  CAS  Google Scholar 

  33. Mareda J, Matile S (2009) Chem Eur J 15:28

    Article  CAS  Google Scholar 

  34. Gorteau V, Bollot G, Mareda J, Matile S (2007) Org Biomol Chem 5:3000

    Article  CAS  Google Scholar 

  35. Gorteau V, Bollot G, Mareda J, Perez-Velasco A, Matile S (2006) J Am Chem Soc 128:14788

    Article  CAS  Google Scholar 

  36. Gorteau V, Julliard MD, Matile S (2008) J Membr Sci 321:37

    Article  CAS  Google Scholar 

  37. Perez-Velasco A, Gorteau V, Matile S (2008) Angew Chem Int Ed 47:921

    Article  CAS  Google Scholar 

  38. Dawson RE, Hennig A, Weimann DP, Emery D, Ravikumar V, Montenegro J, Takeuchi T, Gabutti S, Mayor M, Mareda J, Schalley CA, Matile S (2010) Nature Chem 2:533

    Article  CAS  Google Scholar 

  39. Jentzsch AV, Emery D, Mareda J, Metrangolo P, Resnati G, Matile S (2011) Angew Chem Int Ed 50:11675

    Article  Google Scholar 

  40. Sakai N, Mareda J, Vauthey E, Matile S (2010) Chem Commun 46:4225

    Article  CAS  Google Scholar 

  41. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Angew Chem Int Ed 50:415

    Article  CAS  Google Scholar 

  42. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) Chem Asian J 6:2316

    Article  CAS  Google Scholar 

  43. Schottel BL, Chifotides HT, Dunbar KR (2008) Chem Soc Rev 37:68

    Article  CAS  Google Scholar 

  44. Caltagirone C, Gale PA (2009) Chem Soc Rev 38:520

    Article  CAS  Google Scholar 

  45. Robertazzi A, Krull F, Knapp E-W, Gamez P (2011) CrystEngComm 13:3293

    Article  CAS  Google Scholar 

  46. Garau C, Frontera A, Quiñonero D, Ballester P, Costa A, Deyà PM (2003) ChemPhysChem 4:1344

    Article  CAS  Google Scholar 

  47. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Theor Chem Acc 126:1

    Article  CAS  Google Scholar 

  48. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) ChemPhysChem 12:2742

    Article  CAS  Google Scholar 

  49. Gural’skiy IA, Escudero D, Frontera A, Solntsev PV, Rusanov EB, Chernega AN, Krautscheid H, Domasevitch KV (2009) Dalton Trans 2856

  50. Kollman PA (1972) J Am Chem Soc 94:1837

    Article  CAS  Google Scholar 

  51. Sannigrahi AB, Kar T, Niyogi BG, Hobza P, Schleyer PvR (1990) Chem Rev 90:1061

    Article  CAS  Google Scholar 

  52. Li Q, Hu T, An X, Li W, Cheng J, Gong B, Sun J (2009) ChemPhysChem 10:3310

    Article  CAS  Google Scholar 

  53. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  54. Ahlrichs R, Bär M, Hacer M, Horn H, Kömel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  55. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283

    Article  CAS  Google Scholar 

  56. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227

    Article  CAS  Google Scholar 

  57. Feyereisen MW, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359

    Article  CAS  Google Scholar 

  58. Vahtras O, Almlof J, Feyereisen MW (1993) Chem Phys Lett 213:514

    Article  CAS  Google Scholar 

  59. Frontera A, Quiñonero D, Garau C, Ballester P, Costa A, Deyà PM (2005) J Phys Chem A 109:4632

    Article  Google Scholar 

  60. Quiñonero D, Garau C, Frontera A, Ballester P, Costa A, Deyà PM (2006) J Phys Chem A 110:5144

    Article  Google Scholar 

  61. Quiñonero D, Estarellas C, Frontera A, Deyà PM (2011) Chem Phys Lett 508:144

    Article  Google Scholar 

  62. Geronimo I, Singh NJ, Kim KS (2011) J Chem Theory Comput 7:825

    Article  CAS  Google Scholar 

  63. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  64. Bader RFW (1991) Chem Rev 91:893

    Article  CAS  Google Scholar 

  65. Biegler-König F, Schönbohm J, Bayles D (2001) J Comp Chem 22:545

    Article  Google Scholar 

  66. Sigfridson E, Ryde U (1998) J Comput Chem 19:377

    Article  Google Scholar 

  67. Ding L, Wagner M, Bolte M (2001) Acta Crystallogr Sect C: Cryst Struct Commun 57:162

    Article  CAS  Google Scholar 

  68. Ma K, Bats JW, Wagner M (2001) Acta Crystallogr Sect E: Struct Rep Online 57:o846

    Article  Google Scholar 

  69. Buttery JHN, Effendy Mutrofin S, Plackett NC, Skelton BW, Whitaker CR, White AHZ (2006) Anorg Allg Chem 632:1851

    Article  CAS  Google Scholar 

  70. Wheeler SE, Houk KN (2010) J Phys Chem A 114:8658

    Article  CAS  Google Scholar 

  71. Frontera A, Gamez P, Mascal M, Mooibroek T, Reedijk J (2011) Angew Chem Int Ed 50:9564

    Article  CAS  Google Scholar 

  72. Wheeler SE, Houk KN (2009) J Am Chem Soc 131:3126

    Article  CAS  Google Scholar 

  73. Wheeler SE (2011) J Am Chem Soc 133:10262

    Article  CAS  Google Scholar 

  74. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2011) J Phys Chem A 115:7849

    Article  CAS  Google Scholar 

  75. Jonas V, Frenking G, Reetz MT (1994) J Am Chem Soc 116:8741

    Article  CAS  Google Scholar 

  76. Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin R, Mallard WG (1988) J Phys Chem Ref Data 17(Suppl):1

    Google Scholar 

  77. Quiñonero D, Garau C, Frontera A, Ballester P, Costa A, Deyà PM (2002) Chem Phys Lett 359:486

    Article  Google Scholar 

  78. Lucas X, Estarellas C, Escudero D, Frontera A, Quiñonero D, Deyà PM (2009) ChemPhysChem 10:2256

    Article  CAS  Google Scholar 

  79. Escudero D, Frontera A, Quiñonero D, Deyà PM (2009) J Comput Chem 30:75

    Article  CAS  Google Scholar 

  80. Vijay D, Zipse H, Sastry GN (2008) J Phys Chem B 112:8863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CONSOLIDER–Ingenio 2010 (CSD2010-0065) and the MICINN of Spain (project CTQ2011-27512/BQU, FEDER funds) for financial support. D.Q. thanks the MICINN of Spain for a “Ramon y Cajal” contract. We thank the CESCA for computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Frontera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauzá, A., Quiñonero, D., Deyà, P.M. et al. Tuning of the anion–π interaction. Theor Chem Acc 131, 1219 (2012). https://doi.org/10.1007/s00214-012-1219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1219-6

Keywords

Navigation