Skip to main content

Advertisement

Log in

Multiconfigurational study on the synchronous mechanisms of the ClO self-reaction leading to Cl or Cl2

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

For studying the adiabatic and nonadiabatic mechanisms of the ClO (X 2Π) + ClO (X 2Π) → ClOOCl → 2Cl (2 P u) + O2 (X 3Σ g ) reaction (1) and the ClO (X 2Π) + ClO (X 2Π) → ClOOCl → Cl2 (X 1Σ + g ) + O2 (X 3Σ g ) reaction (2), we calculated, by partial geometry optimizations under the C2 constraint, the O–O and O–Cl dissociation potential energy curves (PECs) from the five low-lying states of ClOOCl at the CASPT2 level. The CASSCF minimum-energy crossing point (MECP) between the potential energy surfaces of the 1 1A ground state [correlating with the product of reaction (1)] and the 1 3B state [correlating with the product of reaction (2)] states was also determined. Based on the CAS calculation results (PECs, energies, and spin–orbit coupling at the MECP), we predict that reaction (1) occurs along pathway 1: ClO (X 2Π) + ClO (X 2Π) → ClOOCl (1 1A) → 2Cl (2 P u) + O2 (X 3Σ g ) and that reaction (2) occurs along pathway 2: ClO (X 2Π) + ClO (X 2Π) → ClOOCl (1 1A) → 1 1A/1 3B MECP (142.4 cm−1) → ClOOCl (1 3B) → Cl2 (X 1Σ + g ) + O2 (X 3Σ g ). The needed energies (relative to the reactant) for pathways 1 and 2 are predicted to be 5.3 and 11.1 kcal/mol, respectively, which indicates that reaction (1) is more favorable than reaction (2). The present work supports the traditional photochemical model for ozone degradation: ClOOCl (1 1A), formed by two ClO (X 2Π), can directly produce O2 plus two Cl atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molina LT, Molina MJ (1987) J Phys Chem 91:433–436

    Article  CAS  Google Scholar 

  2. Cox RA, Hayman GD (1988) Nature 332:796–800

    Article  CAS  Google Scholar 

  3. Sander SP, Friedl RR, Yung YL (1989) Science 245:1095–1098

    Article  CAS  Google Scholar 

  4. World Meteorological Organization (WMO) (2006) Scientific assessment of ozone depletion. WMO, global ozone research and monitoring project, report no. 50: Geneva, Switzerland, 2007, http://ozone.unep.org/Assessment_Panels/SAP/Scientific_Assessment_2006. Accessed Feb 2007

  5. von Hobe M, Salawitch RJ, Canty T, Keller-Rudek H, Moortgat GK, Grooss J-U, Muller R, Stroh F (2007) Atmos Chem Phys 7:3055–3069

    Article  Google Scholar 

  6. Santee ML, Sander SP, Livesey NJ, Froidevaux L (2010) PNAS 107(15):6588–6593. doi:10.1073/pnas.0912659107

    Article  CAS  Google Scholar 

  7. Ferracci V, Rowley DM (2010) Phys Chem Chem Phys 12:11596–11608

    Article  CAS  Google Scholar 

  8. Sander SP, Ravishankara AR, Golden DM, Kolb CE, Kurylo MJ, Molina MJ, Moortgat GK, Finlayson-Pitts BJ, Wine PH, Huie RE, Orkin VL (2006) Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation no. 15, JPL publication 06-2. Jet Propulsion Laboratory, Pasadena

  9. Trolier M, Mauldin RL III, Ravishankara AR (1990) J Phys Chem 94:4896–4907

    Article  CAS  Google Scholar 

  10. Birk M, Friedl RR, Cohen EA, Pickett HM, Sander SP (1989) J Chem Phys 91:6588–6597

    Article  CAS  Google Scholar 

  11. Jacobs J, Kronberg M, Müller HSP, Willner H (1994) J Am Chem Soc 116:1106–1114

    Article  CAS  Google Scholar 

  12. Moore TA, Okumura M, Seale JW, Minton TK (1999) J Phys Chem A 103:1691–1695

    Article  CAS  Google Scholar 

  13. Pope FD, Hansen JC, Bayes KD, Friedl RR, Sander SP (2007) J Phys Chem A 111:4322–4332

    Article  CAS  Google Scholar 

  14. von Hobe M, Stroh F, Beckers H, Benter T, Willner H (2009) Phys Chem Chem Phys 11:1571–1580

    Article  Google Scholar 

  15. Wilmouth DM, Hanisco TF, Stimpfle RM, Anderson JG (2009) J Phys Chem A 113:14099–14108

    Article  CAS  Google Scholar 

  16. Papanastasiou DK, Papadimitriou VC, Fashey DW, Burkholder JB (2009) J Phys Chem A 113:13711–13726

    Article  CAS  Google Scholar 

  17. Chen H-Y, Lien C-Y, Lin W-Y, Lee YT, Lin JJ (2009) Science 324:781–784

    Article  CAS  Google Scholar 

  18. Lien C-Y, Lin W-Y, Chen H-Y, Huang W-T, Jin B, Chen C, Lin JJ (2009) J Chem Phys 131:174301

    Article  Google Scholar 

  19. Jin B, Chen I-C, Huang W-T, Lien C-Y, Guchhait N, Lin JJ (2010) J Phys Chem A 114:4791–4797

    Article  CAS  Google Scholar 

  20. Huang W-T, Chen AF, Chen I-C, Tsai C-H, Lin JJ (2011) Phys Chem Chem Phys 13:8195–8203

    Article  CAS  Google Scholar 

  21. McGrath MP, Clemitshaw KC, Rowland FS, Hehre WJ (1990) J Phys Chem 94:6126–6132

    Article  CAS  Google Scholar 

  22. Rendell AP, Lee TJ (1991) J Chem Phys 94:6219–6228

    Article  CAS  Google Scholar 

  23. Lee TJ, Rohlfing CM, Rice JE (1992) J Chem Phys 97:6593–6605

    Article  CAS  Google Scholar 

  24. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:9335–9339

    Article  CAS  Google Scholar 

  25. Kaledin AL, Morokuma K (2000) J Chem Phys 113:5750–5762

    Article  CAS  Google Scholar 

  26. Toniolo A, Persico M, Pitea D (2000) J Phys Chem A 104:7278–7283

    Article  CAS  Google Scholar 

  27. Toniolo A, Granucci G, Inglese S, Persico M (2001) Phys Chem Chem Phys 3:4266–4279

    Article  CAS  Google Scholar 

  28. Tomasello P, Ehara M, Nakatsuji H (2002) J Chem Phys 116:2425–2432

    Article  CAS  Google Scholar 

  29. Tomasello P, Ehara M, Nakatsuji H (2003) J Chem Phys 118:5811–5820

    Article  CAS  Google Scholar 

  30. Peterson KA, Francisco JS (2004) J Chem Phys 121:2611–2616

    Article  CAS  Google Scholar 

  31. Ončák M, Šištík L, Slavíček P (2010) J Chem Phys 133:174303

    Article  Google Scholar 

  32. Grein F (2011) Chem Phys 382:34–40

    Article  CAS  Google Scholar 

  33. Zhu RS, Lin MC (2003) J Chem Phys 118:4094–4106

    Article  CAS  Google Scholar 

  34. Andersson K, Roos BO (1995) Multiconfigurational second-order perturbation theory. In: Yarkony DR (ed) Modern electronic structure theory, part 1. World Scientific, Singapore, p 55

    Chapter  Google Scholar 

  35. Andersson K, Roos BO (1993) Int J Quantum Chem 45:591–607

    Article  CAS  Google Scholar 

  36. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Lawley KP (ed) Advances in chemical physics. Wiley, New York, pp 399–445

    Chapter  Google Scholar 

  37. Karlström G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222

    Article  Google Scholar 

  38. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist P-Å, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224–247

    Article  CAS  Google Scholar 

  39. Almlof J, Taylor PR (1987) J Chem Phys 86:4070–4077

    Article  CAS  Google Scholar 

  40. Pierloot K, Dumez B, Widmark P-O, Roos BO (1995) Theoret Chem Acc 90:87–114

    CAS  Google Scholar 

  41. Widmark P-O, Malmqvist P-Å, Roos BO (1990) Theoret Chem Acc 77:291–306

    Article  CAS  Google Scholar 

  42. Widmark P-O, Persson BJ, Roos BO (1991) Theoret Chem Acc 79:419–432

    Article  CAS  Google Scholar 

  43. Li J, Hao Y, Yang J, Zhou C, Mo Y (2007) J Chem Phys 127:104307

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support for this work that was provided by National Natural Science Foundation of China through Contract No. 20773161. We thank the anonymous referees for their constructive suggestions to improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyong Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Dong, H. & Huang, MB. Multiconfigurational study on the synchronous mechanisms of the ClO self-reaction leading to Cl or Cl2 . Theor Chem Acc 131, 1194 (2012). https://doi.org/10.1007/s00214-012-1194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1194-y

Keywords

Navigation