Skip to main content
Log in

Scalar-relativistic 5f-in-core pseudopotentials and core-polarization potentials for trivalent actinides: calibration calculations for Ac3+, Cm3+ and Lr3+ complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The performance of recently proposed 5f-in-core pseudopotentials for the trivalent actinides was investigated in calculations for model complexes An3+Ln for three selected actinides (An3+ = Ac3+, Cm3+, Lr3+) and eight simple ligands with atoms from the first three periods of the table of elements (Ln = F, Cl, OH, SH, CO, NH 2 , H2O, H2S, NH3). Results of Hartree-Fock and Coupled Cluster with singles, doubles and perturbative triples calculations using basis sets of quadruple-zeta quality are compared to corresponding reference data obtained with scalar-relativistic energy-adjusted 5f-in-valence small-core pseudopotentials. The inclusion of core-polarization potentials in the 5f-in-core pseudopotential calculations and corrections of the basis set superposition error by the counterpoise correction leads to very good agreement between the 5f-in-valence and 5f-in-core pseudopotential results for bond lengths, bond angles and binding energies. Results from 5f-in-core pseudopotential calculations using different density functionals also show reasonable agreement with the more rigorous Coupled Cluster results. It is argued that the An 5f rather than the An f population is a useful criterion for the applicability of a specific An 5f-in-core pseudopotential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kaltsoyannis N, Hay PJ, Li J, Blaudeau JP, Bursten BE (2008) In: Morss LR, Edelstein N, Fuger J (eds) The chemistry of the actinide and transactinide elements, 3rd edn. Springer Dordrecht, The Netherlands, p 1893

  2. Abu-Khader MM (2009) Prog Nucl Energy 51:225

    Article  Google Scholar 

  3. Pyykkö P (1987) Inorg Chim Acta 139:243

    Article  Google Scholar 

  4. Pepper M, Bursten BE (1991) Chem Rev 91:719

    Article  CAS  Google Scholar 

  5. Schreckenbach G, Hay PJ, Martin RL (1999) J Comp Chemn 20:70

    Article  CAS  Google Scholar 

  6. Dolg M, Cao X (2004) In: Hirao K, Ishikawa Y (eds) Recent advances in relativistic molecular theory, vol 6, ed. (World Scientific, New Jersey, 2004), chap 1

  7. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  8. Cao X, Dolg M (2006) Coord Chem Rev 250:900

    Article  CAS  Google Scholar 

  9. Schwerdtfeger P, Brown JR, Laerdahl JK, Stoll H (2000) J Chem Phys 113:7110

    Article  CAS  Google Scholar 

  10. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114(4–5):283

    Article  CAS  Google Scholar 

  11. Cao X, Dolg M (2010) In: Barysz M, Ishikawa Y (eds) Challenges and advances in computational chemistry and physics, vol 10, (CRC-Press, New York, 2010), chap. 6

  12. Weigand A, Cao X, Vallet V, Flament JP, Dolg M (2010) J Phys Chem 113(43):11509

    Google Scholar 

  13. Cao X, Dolg M (2009) J Phys Chem A 113:12573

    Article  Google Scholar 

  14. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Article  CAS  Google Scholar 

  15. Dolg M, Stoll H, Preuss H (1993) Theor Chim Acta 85:441

    Article  CAS  Google Scholar 

  16. Wang Y, Dolg M (1998) Theor Chem Acc 100:124

    Article  CAS  Google Scholar 

  17. Hülsen M, Weigand A, Dolg M (2009) Theor Chem Acc 122:23

    Article  Google Scholar 

  18. Moritz A, Cao X, Dolg M (2007) Theor Chem Acc 117:473

    Article  CAS  Google Scholar 

  19. Moritz A, Cao X, Dolg M (2007) Theor Chem Acc 118:845

    Article  CAS  Google Scholar 

  20. Moritz A, Dolg M (2008) Theor Chem Acc 121:297

    Article  CAS  Google Scholar 

  21. Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730

    Article  CAS  Google Scholar 

  22. Küchle W, Dolg M, Stoll H, Preuss H (1994) J Chem Phys 100:7535

    Article  Google Scholar 

  23. Cao X, Dolg M (2001) J Chem Phys 115(16):7348

    Article  CAS  Google Scholar 

  24. Cao X, Dolg M (2002) J. Molec. Struct. (Theochem) 581:139

    Article  CAS  Google Scholar 

  25. Cao X, Dolg M, Stoll H (2003) J Chem Phys 118:487

    Article  CAS  Google Scholar 

  26. Cao X, Dolg M (2004) J Molec Struct (Theochem) 673:203

    Article  CAS  Google Scholar 

  27. Müller W, Flesch J, Meyer W (1984) J Chem Phys 80:3297

    Article  Google Scholar 

  28. Müller W, Meyer W (1984) J Chem Phys 80:3311

    Article  Google Scholar 

  29. Jong WAD, Harrison RJ, Nichols JA, Dixon DA (2001) Theor Chem Acc 107:22

    Article  Google Scholar 

  30. Vallet V, Macak P, Wahlgren U, Grenthe I (2006) Theor Chem Acc 115(2–3):145

    Article  CAS  Google Scholar 

  31. Odoh SO, Schreckenbach G (2010) J Phys Chem A 114(4):1957

    Article  CAS  Google Scholar 

  32. Schreckenbach G, Shamov GA (2010) Acc Chem Res 43(1):19

    Article  CAS  Google Scholar 

  33. Iché-Tarrat N, Marsden CJ (2008) J Phys Chem 112:7632

    Article  Google Scholar 

  34. Weigand A, Cao X, Yang J, Dolg M (2010) Theor Chem Acc 126:117

    Article  CAS  Google Scholar 

  35. Wiebke J, Moritz A, Cao X, Dolg M (2007) Phys Chem Chem Phys 9:459

    Article  CAS  Google Scholar 

  36. Skerencak A, Panak PJ, Neck V, Trumm M, Schimmelpfennig B, Lindqvist-Reis P, Klenze R, Fanghaenel T (2010) J Phys Chem B 114(47):15626

    Article  CAS  Google Scholar 

  37. Cao X, Li Q, Moritz A, Xie Z, Dolg M, Chen X, Fang W (2006) Inorg Chem 45(8):3444

    Article  CAS  Google Scholar 

  38. Cao X, Heidelberg D, Ciupka J, Dolg M (2010) Inorg Chem 49:10307

    Article  CAS  Google Scholar 

  39. Castro L, Yahia A, Maron L (2010) Dalton Trans 39:6682

    Article  CAS  Google Scholar 

  40. Castro L, Yahia A, Maron L (2010) Phys Chem Phys 11:990

    Google Scholar 

  41. Maron L, Eisenstein O, Andersen RA (2009) Organometallics 28:3629

    Article  CAS  Google Scholar 

  42. Banik NL, Schimmelpfennig B, Marquardt CM, Brendebach B, Geist A, Denecke MA (2010) Dalton Trans 39:5117

    Article  CAS  Google Scholar 

  43. Wood JH, Boring AM (1978) Phys Rev B 18:2701

    Article  CAS  Google Scholar 

  44. Kendall RA, Dunning TH Jr., Harrison RJ (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  45. Becke AD (1986) J Chem Phys 84(8):4524

    Article  CAS  Google Scholar 

  46. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  48. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  50. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  51. Adamo C, Barone V (1999) J Chem Phys 110(13):6158

    Article  CAS  Google Scholar 

  52. Deegan MJO, Knowles PJ (1994) Chem Phys Lett 227:321

    Article  CAS  Google Scholar 

  53. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A, Molpro A version 2006.1, a package of ab initio programs (2006)

  54. Knowles PJ, Hampel C, Werner HJ (1993) J Chem Phys 99:5219

    Article  CAS  Google Scholar 

  55. Boys SF, Bernardi F (1970) Mol Phys 19:553

    CAS  Google Scholar 

  56. Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) J Chem Phys 105:1052

    Article  CAS  Google Scholar 

  57. Wang SG, Schwarz WHE (1995) J Phys Chem 99:11687

    Article  CAS  Google Scholar 

  58. Dolg M, Stoll H, (1996) Elsevier, pp 607–729

  59. Field RW (1982) Ber Bunsenges Phys Chem 86(9):771

    CAS  Google Scholar 

  60. Russo TV, Martin RL, Hay PJ (1995) J Phys Chem 99:17085

    Article  CAS  Google Scholar 

  61. Louie SG, Froyen S, Cohen ML (1982) Phys Rev B 26(4):1738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dolg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (56 KB)

Electronic supplementary material

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weißmann, D., Dolg, M. Scalar-relativistic 5f-in-core pseudopotentials and core-polarization potentials for trivalent actinides: calibration calculations for Ac3+, Cm3+ and Lr3+ complexes. Theor Chem Acc 131, 1193 (2012). https://doi.org/10.1007/s00214-012-1193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1193-z

Keywords

Navigation