Modelization of vibrational spectra beyond the harmonic approximation from an iterative variation–perturbation scheme: the four conformers of the glycolaldehyde

Regular Article
Part of the following topical collections:
  1. Barone Festschrift Collection

Abstract

This paper presents the computed anharmonic frequencies and IR intensities in the mid-infrared region for the four conformers of glycolaldehyde (Cis cis, Trans trans, Trans gauche and Cis trans forms). The fundamental transitions and their connected overtones and combination bands through strong anharmonic couplings (Fermi resonances) are provided. The results are stemmed from an iterative variational–perturbational resolution of the vibrational problem implemented in the VCI-P code. The four potential electronic surfaces are built as a Taylor series truncated to the fourth order around each minimum geometry. The second derivatives with respect to the normal coordinates were computed at the CCSD(T)/cc-pVTZ level, while the third and fourth derivatives were estimated with the B3LYP/6-31 + G(d,p) model chemistry. For the most stable Cc form, an average deviation of about 10 cm−1 is obtained with respect to the unambiguous experimental values. Furthermore, some of the transitions observed in the CH stretchings region were reassigned. The theoretical values calculated for the Tt and Tg forms are compared to the experimental data obtained from the irradiation of the Cc conformer isolated in Ar matrix with an IR source.

Keywords

Ab initio DFT Anharmonic vibrational spectra Glycolaldehyde IR intensities 

References

  1. 1.
    Sevegney M, Kannan R, Siedle A, Naik R, Naik V (2006) Vib Spectrosc 40:246CrossRefGoogle Scholar
  2. 2.
    Gagarinov A, Degtyareva O, Khodonov A, Terpugov E (2006) Vib Spectrosc 42:231CrossRefGoogle Scholar
  3. 3.
    Schweitzer-Stenner R (2006) Vib Spectrosc 42:98CrossRefGoogle Scholar
  4. 4.
    Zhao W, Gao X, Hao L, Huang M, Huang T, Wu T, Zhang W, Chen W (2007) Vib Spectrosc 44:388CrossRefGoogle Scholar
  5. 5.
    Portnov A, Ganot Y, Bespachiansky E, Rosenwaks S, Bar I (2006) Vib Spectrosc 42:147CrossRefGoogle Scholar
  6. 6.
    Xie W, Ye Y, Shen A, Zhou L, Lou Z, Wang X, Hu J (2008) Vib Spectrosc 47:119CrossRefGoogle Scholar
  7. 7.
    Bramley MJ, Carrington T Jr (1993) J Chem Phys 99:8519CrossRefGoogle Scholar
  8. 8.
    Dunn KM, Boggs JE, Pulay P (1986) J Chem Phys 85:5838CrossRefGoogle Scholar
  9. 9.
    Bowman J, Christoffel K, Tobin F (1979) J Phys Chem 83:905CrossRefGoogle Scholar
  10. 10.
    Christiansen O (2003) J Chem Phys 119:5773CrossRefGoogle Scholar
  11. 11.
    Cassam-Chenai P, Lievin J (2006) J Comput Chem 27:627CrossRefGoogle Scholar
  12. 12.
    Christiansen O (2004) J Chem Phys 120:2149CrossRefGoogle Scholar
  13. 13.
    Iung C, Gatti F, Meyer HD (2004) J Chem Phys 120:6992CrossRefGoogle Scholar
  14. 14.
    Culot F, Lievin J (1994) Theor Chim Acta 89:227CrossRefGoogle Scholar
  15. 15.
    Culot F, Laruelle F, Lievin J (1995) Theor Chim Acta 92:211Google Scholar
  16. 16.
    Carbonniere P, Dargelos A, Pouchan C (2009) Theor Chem Acc 125:543CrossRefGoogle Scholar
  17. 17.
    Pouchan C, Zaki K (1997) J Chem Phys 107:342CrossRefGoogle Scholar
  18. 18.
    Senent ML (2004) J Phys Chem A 108:6286CrossRefGoogle Scholar
  19. 19.
    Ratajczyk T, Pecul M, Sadlej J, Helgaker T (2004) J Phys Chem A 108:2758CrossRefGoogle Scholar
  20. 20.
    Niki H, Maker PD, Savage CM, Breitenbach LP (1981) Chem Phys Lett 80:499CrossRefGoogle Scholar
  21. 21.
    Michelsen H, Klaboe P (1969) J Mol Struct 4:293CrossRefGoogle Scholar
  22. 22.
    Marstokk KM, Mollendal H (1969) J Mol Struct 16:259CrossRefGoogle Scholar
  23. 23.
    Jetzki M, Luckhaus D, Signorell R (2004) Can J Chem 82:915CrossRefGoogle Scholar
  24. 24.
    Aspiala A, Murto J, Stén P (1986) Chem Phys 106:399CrossRefGoogle Scholar
  25. 25.
    Ceponkus J, Chin W, Chevalier M, Broquier M, Limongi A, Crepin C (2010) J Chem Phys 133:094502CrossRefGoogle Scholar
  26. 26.
    Raghavachri K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479CrossRefGoogle Scholar
  27. 27.
    CFOUR, a quantum chemical program package written by Stanton JF, Gauss J, Harding ME, Szalay PG, with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau TC, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, O’Neill DP, Price DR, Prochnow E, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J and Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJ Aa, Jørgensen P, and Olsen J), and ECP routines by Mitin AV and van Wüllen C. For the current version, see http://www.cfour.de
  28. 28.
    Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel, HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J. A, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT, 2009Google Scholar
  29. 29.
    Begue D, Carbonniere P, Pouchan C (2005) J Phys Chem A 109:4611CrossRefGoogle Scholar
  30. 30.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr R (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  32. 32.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  33. 33.
    Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  34. 34.
    Carbonniere P, Barone V (2004) Chem Phys Lett 399:226CrossRefGoogle Scholar
  35. 35.
    Carbonniere P, Lucca T, Pouchan C, Rega N, Barone V (2005) J Comput Chem 26:384CrossRefGoogle Scholar
  36. 36.
    Barone V (2005) J Chem Phys 122:014108CrossRefGoogle Scholar
  37. 37.
    Papousek D, Aliev MR (1982) Molecular vibrational rotational spectra. Elsevier, Amsterdam 139Google Scholar
  38. 38.
    Burcl R, Carter S, Handy NC (2003) Chem Phys Lett 373:357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Groupe Chimie Théorique et Réactivité, ECP, IPREM UMR CNRS 5254Université de Pau et des Pays de l’Adour 2PauFrance

Personalised recommendations