Skip to main content
Log in

Improving the study of proton transfers between amino acid side chains in solution: choosing appropriate DFT functionals and avoiding hidden pitfalls

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

An Erratum to this article was published on 30 December 2012

Abstract

We have studied the influence of implicit solvent models, inclusion of explicit water molecules, inclusion of vibrational effects, and density functionals on the quality of the predicted pK a of small amino acid side chain models. We found that the inclusion of vibrational effects and explicit water molecules is crucial to improve the correlation between the computed and the experimental values. In these micro-solvated systems, the best agreement between DFT-computed electronic energies and benchmark values is afforded by BHHLYP and B97-2. However, approaching experimental results requires the addition of more than three explicit water molecules, which generates new problems related to the presence of multiple minima in the potential energy surface. It thus appears that a satisfactory ab initio prediction of amino acid side chain pK a will require methods that sample the configurational space in the presence of large solvation shells, while at the same time computing vibrational contributions to the enthalpy and entropy of the system under study in all points of that surface. Pending development of efficient algorithms for those computations, we strongly suggest that whenever counterintuitive protonation states are found in a computational study (e.g., the presence of a neutral aspartate/neutral histidine dyad instead of a deprotonated aspartate/protonated histidine pair), the reaction profile should be computed under each of the different protonation micro-states by constraining the relevant N–H or O–H bonds, in order to avoid artifacts inherent to the complex nature of the factors contributing to the pK a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. da Silva CO, da Silva EC, Nascimento MAC (1999) J Phys Chem A 103:11194–11199

    Article  Google Scholar 

  2. Adam KR (2002) J Phys Chem A 106:11963–11972

    Article  CAS  Google Scholar 

  3. Pliego JR Jr, Riveros JM (2002) J Phys Chem A 106:7434–7439

    Article  CAS  Google Scholar 

  4. Schmidt am Busch M, Knapp EW (2004) Chem Phys Chem 5:1513–1524

    Article  Google Scholar 

  5. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem A 110:2493–2499

    Article  CAS  Google Scholar 

  6. Ho J, Coote ML (2010) Theor Chem Acc 125:3–21

    Article  CAS  Google Scholar 

  7. Peräkylä M (1999) Phys Chem Chem Phys 1:5643–5647

    Article  Google Scholar 

  8. Brás NF, Perez MAS, Fernandes PA, Silva PJ, Ramos MJ J Chem Theor Comp (submitted)

  9. Baker J, Kessi A, Delley B (1996) J Chem Phys 105:192

    Article  CAS  Google Scholar 

  10. Siegbahn PEM, Eriksson L, Himo F, Pavlov M (1998) J Phys Chem B 102:10622

    Article  CAS  Google Scholar 

  11. Fernandes PA, Ramos MJ (2003) J Am Chem Soc 125:6311

    Article  CAS  Google Scholar 

  12. Riley KE, Op’t Holt BT, Merz KM Jr (2007) J Chem Theory Comput 3:407

    Article  CAS  Google Scholar 

  13. Perdew JP (1991) Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche P, Eschig H (eds) Electronic structure of solids ‘91. Akademie Verlag, Berlin, pp 11–20

    Google Scholar 

  14. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  15. Becke AD (1993) J Chem Phys I(98):5648

    Article  Google Scholar 

  16. Lee C, Yang W, Parr R (1998) J Phys Rev B 37:785

    Article  Google Scholar 

  17. Hertwig RW, Koch W (1995) J Comp Chem 16:576

    Article  CAS  Google Scholar 

  18. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264

    Article  CAS  Google Scholar 

  19. Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233

    Article  CAS  Google Scholar 

  20. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  21. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  22. Xu X, Zhang Q, Muller RP, Goddard WA (2005) J Chem Phys 122:014105

    Article  Google Scholar 

  23. Perdew JP, Tao J, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  24. Perdew JP, Tao J, Staroverov VN, Scuseria GE (2004) J Chem Phys 120:6898

    Article  CAS  Google Scholar 

  25. Perdew JP, Ruzsinszky A, Tao J, Csonka GI, Scuseria GE (2007) Phys Rev A 76:042506

    Article  Google Scholar 

  26. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129 (erratum in J Chem Phys 121:11507)

    Google Scholar 

  27. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    Article  Google Scholar 

  29. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  30. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  31. Granovsky AA Firefly version 7.0. http://classic.chem.msu.su/gran/gamess/index.html

  32. Schwenke DW (2005) J Chem Phys 122:014107

    Article  Google Scholar 

  33. Truhlar DG (1998) Chem Phys Lett 294:45

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar DG (2005) J Phys Chem A 109:6624

    Article  CAS  Google Scholar 

  35. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  36. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  37. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  38. Cossi M, Mennucci B, Pitarch J, Tomasi J (1998) J Comput Chem 19:833–846

    Article  CAS  Google Scholar 

  39. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  40. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  41. Tissandier MD, Cowen KA, Feng WY, Gundluach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) J Phys Chem A 102:7787–7794

    Article  CAS  Google Scholar 

  42. Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  43. Hunter EP, Lias SG (1998) J Phys Chem Ref Data 27:413–656

    Article  CAS  Google Scholar 

  44. Linstrom P, Mallard W (eds) (2003) NIST chemistry web book, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg. http://webbook.nist.gov

  45. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  46. Gómez PC, Pacios LF (2005) Chem Phys Phys Chem 7:1374–1381

    Google Scholar 

  47. Wang J, Dong H, Li H, He H (2005) J Phys Chem B 109:18664–18672

    Article  CAS  Google Scholar 

  48. Schiøtt B (2004) Chem Commun, 498–499

  49. Leopoldini M, Russo N, Toscano M (2010) J Phys Chem B 114:11584–11593

    Article  CAS  Google Scholar 

  50. Nagy PI, Erhardt PW (2010) J Phys Chem B 114:16436–16442

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ramos.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2012_1179_MOESM1_ESM.doc

Supplementary material 1 (DOC 823 kb) SUPPORTING INFORMATION Geometries of every described molecule optimized with each density functional and with MP2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, P.J., Perez, M.A.S., Brás, N.F. et al. Improving the study of proton transfers between amino acid side chains in solution: choosing appropriate DFT functionals and avoiding hidden pitfalls. Theor Chem Acc 131, 1179 (2012). https://doi.org/10.1007/s00214-012-1179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1179-x

Keywords

Navigation