Skip to main content
Log in

Is the dynamical polarization a significant part of the contribution of the triples to the correlation energy?

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

One may call dynamical polarization of doubly excited configurations the energy lowering of these configurations under the response of the other electrons to the so-created fluctuation of the electric field. This contribution of triply excited configurations may be identified and calculated through a computation that only requires a computation time proportional to the sixth power of the number of molecular orbitals (MOs), instead of the seventh power for the total contribution of the triples. Its amplitude depends on the choice of the MOs and becomes important when localized MOs are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Szabo A, Ostlund N (1982) Modern quantum chemistry: introduction to advanced electronic structure theory. MacMillan, New York

    Google Scholar 

  2. Wennmohs F, Neese F (2008) Chem Phys 343:217

    Article  CAS  Google Scholar 

  3. Kutzelnigg W (1977) In: Schaefer HF (ed) Methods of electronic structure theory. Plenum, New York, p 172

    Google Scholar 

  4. Koch S, Kutzelnigg W (1981) Theor Chim Acta (Berl) 59:387

    Article  CAS  Google Scholar 

  5. Daudey JP, Heully JL, Malrieu JP (1993) J Chem Phys 99:1240

    Article  CAS  Google Scholar 

  6. Sanchez-Marin J, Nebot-Gil I, Malrieu JP, Heully JP, Maynau D (1997) Theor Chim Acta 95:215

    Article  CAS  Google Scholar 

  7. Čížek J (1966) J Chem Phys 45:4256

    Article  Google Scholar 

  8. Čížek J (1969) In: Hariharan PC (ed) Advances in chemical physics, vol 14. Wiley, New York, p 35

    Chapter  Google Scholar 

  9. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  10. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    Article  CAS  Google Scholar 

  11. Heully JL, Malrieu JP (2006) J Mol Struct Theochem 758:53

    Article  Google Scholar 

  12. Hiberty P, Shaik S (2002) Theor Chem Acc 108:255

    Article  CAS  Google Scholar 

  13. Hiberty P, Humbel S, Byrman C, van Lenthe J (1994) J Chem Phys 101:5969

    Article  CAS  Google Scholar 

  14. Calzado C, Caballol R, Malrieu JP (2002) J Chem Phys 116:3985

    Article  CAS  Google Scholar 

  15. Calzado C, Angeli C, Taratiel D, Caballol R, Malrieu JP (2009) J Chem Phys 131:044327

    Article  Google Scholar 

  16. Claverie P, Diner S, Malrieu JP (1967) Int J Quantum Chem 1:751

    CAS  Google Scholar 

  17. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  18. Ivanic J (2003) J Chem Phys 119:9364

    Article  CAS  Google Scholar 

  19. Pipek J, Mezey P (1989) J Chem Phys 90:4916

    Article  CAS  Google Scholar 

  20. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  21. Evangelista FA (2011) J Chem Phys 134:224102

    Article  Google Scholar 

  22. Kowalski K, Piecuch P (2001) Chem Phys Lett 344:165

    Article  CAS  Google Scholar 

  23. Widmark PO, Malmqvist PA, Roos BO (1990) Theor Chim Acta 77:291

    Article  CAS  Google Scholar 

  24. Junquera-Hernández JM, Sánchez-Marín J, Bendazzoli GL, Evangelisti S (2004) J Chem Phys 120:8405

    Article  Google Scholar 

  25. Helgaker T, Jorgensen P, Olsen J (2004) Molecular electronic-structure theory. Wiley, Chichester

    Google Scholar 

  26. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  27. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  28. Bonham RA, Bartell LS (1959) J Am Chem Soc 81:3491

    Article  CAS  Google Scholar 

  29. Dutta A, Sherrill CD (2003) J Chem Phys 118:1610

    Article  CAS  Google Scholar 

  30. Rendell AP, Lee TJ, Taylor PR (1990) J Chem Phys 92:7050

    Article  CAS  Google Scholar 

  31. Watts JD, Cernusak I, Noga J, Bartlett RJ, Bauschlicher CW Jr, Lee TJ, Rendell AP, Taylor TR (1990) J Chem Phys 93:8875

    Article  CAS  Google Scholar 

  32. Lee TJ, Rendell TJ, Taylor PR (1990) J Chem Phys 94:5463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jean-Paul Malrieu thanks J.-L. Heully for stimulating discussions. The authors express their debt to the scientific achievements of V. Barone in the methodology of quantum chemistry. The support from the Chinese NSF (Grant No. 20825312) and National Basic Research Program (Grant No. 2011CB808600) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Malrieu.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malrieu, JP., Zhang, H. & Ma, J. Is the dynamical polarization a significant part of the contribution of the triples to the correlation energy?. Theor Chem Acc 131, 1156 (2012). https://doi.org/10.1007/s00214-012-1156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1156-4

Keywords

Navigation