Skip to main content
Log in

New insights into oxidation properties and band structure of fluorescein dyes from ab initio calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

During recent years, several publications have investigated the electrical bistability of spin cast films of halogenated fluorescein dyes. In the present contribution, we simulate the excited states of single fluorescein dyes with time-dependent density functional theory (TD-DFT) and we analyzed the band structure of the corresponding molecular crystals with DFT. More precisely, the molecules examined are fluorescein, erythrosine B, and rose bengal. We consider the molecular crystals of fluorescein in salt and lactone forms as well as erythrosine B. Rose bengal showed high quantum yield of the triplet state and high electronic affinity. Therefore, the rose bengal has very strong oxidation properties and it is able to form electrically bistable thin oxide layer. The poor crystal order and small bandwidths of fluorescein in salt form and erythrosine B indicated high resistivity for both crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bandyopadhyay A, Pal AJ (2003) J Phys Chem B 107:2531

    Article  Google Scholar 

  2. Bandyopadhyay A, Pal AJ (2004) Appl Phys Lett 84:999

    Article  CAS  Google Scholar 

  3. Bandyopadhyay A, Pal AJ (2003) Adv Mater 15:1949

    Article  CAS  Google Scholar 

  4. Bandyopadhyay A, Pal AJ (2005) J Phys Chem B 109:6084

    Article  CAS  Google Scholar 

  5. Jakobsson FLE, Crispin X, Cölle M, Büchel M, de Leeuw DM, Berggren M (2007) Org Electron 8:559

    Article  CAS  Google Scholar 

  6. Kärthauser S, Lüssem B, Weides M (2006) J Appl Phys 100:94504

    Article  Google Scholar 

  7. Fazzi D, Castiglioni C, Negri F (2010) Phys Chem Chem Phys 12:1600

    Article  CAS  Google Scholar 

  8. Schmidt PE, Davila C, Esqueda P, Callarotti R (1975) J Solid State Chem 12:293

    Article  CAS  Google Scholar 

  9. Ansari AA, Qadeer A (1985) J Phys D 18:911

    Article  CAS  Google Scholar 

  10. Shirodkar VS, Chourey AG (1988) J Mater Sci Lett 7:1235

    Article  CAS  Google Scholar 

  11. Gloos K, Koppinen PJ, Pekola JP (2003) J Phys Condens Matter 15:1733

    Article  CAS  Google Scholar 

  12. Seo S, Lee MJ, Seo DH, Jeoung EJ, Suh DS, Joung YS, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim JS, Choi JS, Park BH (2004) Appl Phys Lett 85:5655

    Article  CAS  Google Scholar 

  13. Cölle M, Büchel M, de Leeuw DM (2006) Org Electron 7:305

    Article  Google Scholar 

  14. Yang JJ, Pickett MD, Li X, Ohlberg DAA, Stewart DR, Williams RS (2008) Nat Nanotechnol 3:429

    Article  CAS  Google Scholar 

  15. Yoshida TK, Noshiro H, Sugiyama Y (2007) Appl Phys Lett 91:223510

    Google Scholar 

  16. Yang MK, Park JW, Ko TK, Lee JK (2009) Appl Phys Lett 95:042105

    Article  Google Scholar 

  17. Sun B, Liu L, Xu N, Gao B, Wang Y, Han D, Liu X, Han R, Kang J (2009) Jpn J Appl Phys 48:04C061

  18. Jacquemine D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326

    Article  Google Scholar 

  19. Drew A, Head-Gordon M (2005) Chem Rev 105:4009

    Article  Google Scholar 

  20. Barone V, Bloino J, Monti S, Pedone A, Prampolini G (2011) Phys Chem Chem Phys 13:2160

    Article  CAS  Google Scholar 

  21. Knudsen KD, Pattison P, Fitch AN, Cernik RJ (1998) Angew Chem Int Ed 37:2340

    Article  CAS  Google Scholar 

  22. Yamaguchi K, Tamura Z, Maeda M (1997) Acta Cryst C 53:284

    Article  Google Scholar 

  23. Cody V (1987) Acta Cryst C4(3):705

    Google Scholar 

  24. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) Z Kristallogr 220:567

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  26. Vanderbilt D (1990) Phys Rev B 41:7892

    Google Scholar 

  27. Gaussian 03 Revision C.02 (2004) Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian Inc, Wallingford CT

  28. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  29. Hay PJ, Wadt WR (1985) J Chem Phys 82:284

    Article  Google Scholar 

  30. Read AJ, Needs RJ (1991) Phys Rev B 44:13071

    Article  Google Scholar 

  31. Godby RW (1992) Top Appl Phys 69:88

    Google Scholar 

  32. Neckers DC (1989) J Photochem Photobiol A Chem 47:1

    Article  CAS  Google Scholar 

  33. DeRosa MC, Crutchley RJ (2002) Coord Chem Rev 233–234:351

    Article  Google Scholar 

  34. Redmond RW, Gamlin JN (1999) Photochem Photobiol 70:391

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by TRIPODE project DM 20160 of the MIUR, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea di Matteo.

Additional information

Dedicated to Professor Vincenzo Barone and published as part of the special collection of articles celebrating his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buonocore, F., Matteo, A.d. New insights into oxidation properties and band structure of fluorescein dyes from ab initio calculations. Theor Chem Acc 131, 1130 (2012). https://doi.org/10.1007/s00214-012-1130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1130-1

Keywords

Navigation