Theoretical Chemistry Accounts

, 131:1119 | Cite as

Theoretical study for the CH3OCF2CF2OCHO + Cl reaction

  • Tong-yin Jin
  • Hong-bo Yu
  • Cheng-gang Ci
  • Jing-yao LiuEmail author
Regular Article


The reaction of CH3OCF2CF2OCHO with Cl atom has been investigated theoretically by direct dynamics method. The BB1K hybrid functional in conjunction with the 6-31 + G(d,p) basis set has been used to optimize the geometries for the stationary points and explore the potential energy surface of the reaction. Four rotation conformers (RC1-4) of CH3OCF2CF2OCHO are identified, and they are all considered in the kinetic calculation. For each conformer, there are two kinds of H-abstraction channels and one displacement channel, and the latter one should be negligible due to involving much higher energy barrier than the former two. The individual rate constants for each H-abstraction channel are evaluated by the improved canonical variational transition-state theory with a small-curvature tunneling correction. The overall rate constant is evaluated by the Boltzmann distribution function, and a fitted four-parameter rate constant expression is obtained over a wide temperature range of 200–2,000 K. The agreement between the calculated and available experimental value at 296 K is good. The contribution of each conformer to the title reaction is discussed with respect to the temperature. In addition, because of the lack of available experimental data for the species involved in the reactions, the enthalpies of the formation (ΔH f,298°) for the reactant and its product radicals are predicted via isodesmic reaction at the BB1K/6-31 + G(d,p) level.


Direct dynamics Rate constant Variational transition-state theory Hydrogen abstraction CH3OCF2CF2OCHO 



We thank Professor Donald G. Truhlar for providing the POLYRATE 9.7 program. This work is supported by the National Nature Science Foundation of China (20973077, 20303007) and the Program for New Century Excellent Talents in University (NCET).

Supplementary material

214_2012_1119_MOESM1_ESM.pdf (187 kb)
Supplementary material 1 (PDF 187 kb)


  1. 1.
    Marchionni G, Visca M, Eur Pat Appl. 1275678A 2003 (Chem Abs 138, 90675)Google Scholar
  2. 2.
    Sianesi D, Marchionni G, De Pasquale RJ (1994) In: Banks RE (ed) Organofluorine chemistry: principles and commercial applications. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Marchionni G, Ajroldi G, Pezzin G (1996) In: Agarwal SL, Russom S (eds) Comprehensive polymer science (Second Supplement). Pergamon, LondonGoogle Scholar
  4. 4.
    Marchionni G, Guarda PA (1998) U.S. Patent, 5,744,651Google Scholar
  5. 5.
    Yu HB, Cui FC, Wang YX, Liu HX, Liu JY (2011) J Theor Comp Chem 10:231–244CrossRefGoogle Scholar
  6. 6.
    Sulback Andersen MP, Hurley MD, Wallington TJ, Blandini F, Jensen NR, Librando V, Hjorth J, Marchionni G, Avataneo M, Visca M, Nicolaisen FM, Nielsen OJ (2004) J Phys Chem A 108:1964–1972CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715CrossRefGoogle Scholar
  8. 8.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440CrossRefGoogle Scholar
  9. 9.
    Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transition state theory. In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, p 65Google Scholar
  10. 10.
    Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159CrossRefGoogle Scholar
  11. 11.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, ScalmaniG, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford, CTGoogle Scholar
  12. 12.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  13. 13.
    Becke AD (1996) J Chem Phys 104:1040CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Gonzales-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012CrossRefGoogle Scholar
  15. 15.
    Parveen S, Chandra AK (2009) J Phys Chem A 113:177–183CrossRefGoogle Scholar
  16. 16.
    Gao H, Wang YX, Liu JY, Yang L, Li ZS, Sun CC (2008) J Phys Chem A 112:4176–4185Google Scholar
  17. 17.
    Hemelsoet K, Moran D, Speybroeck VV, Waroquier M, Radom L (2006) J Phys Chem A 110:8942CrossRefGoogle Scholar
  18. 18.
    Corchado JC, Chuang YY, Fast PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Lynch BJ, Melissas VS, Villa J, Rossi I, Coitino EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) POLYRATE, version 9.7. University of Minnesota, MinneapolisGoogle Scholar
  19. 19.
    Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730–1748CrossRefGoogle Scholar
  20. 20.
    Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235CrossRefGoogle Scholar
  21. 21.
    Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408CrossRefGoogle Scholar
  22. 22.
    Piter KS, Gwinn WD (1942) J Chem Phys 10:428CrossRefGoogle Scholar
  23. 23.
    Piter KS (1946) J Chem Phys 14:239CrossRefGoogle Scholar
  24. 24.
    Truhlar DG (1991) J Comput Chem 12:266–270CrossRefGoogle Scholar
  25. 25.
    Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221CrossRefGoogle Scholar
  26. 26.
    Chuang YY, Truhlar DG (2004) J Chem Phys 121:7036CrossRefGoogle Scholar
  27. 27.
    Chuang YY, Truhlar DG (2006) J Chem Phys 124:179903CrossRefGoogle Scholar
  28. 28.
    Ellingson BA, Lynch VA, Mielke SL, Truhlar DG (2006) J Chem Phys 125:084305CrossRefGoogle Scholar
  29. 29.
    Zheng JJ, Truhlar DG (2010) Phys Chem Chem Phys 12:7782–7793CrossRefGoogle Scholar
  30. 30.
    Linstrom PJ, Mallard WG (eds) (2009) Chemistry Webbook NIST. Available from: http://webbook.Nist.Gov/chemistry

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tong-yin Jin
    • 1
  • Hong-bo Yu
    • 1
  • Cheng-gang Ci
    • 1
  • Jing-yao Liu
    • 1
    Email author
  1. 1.State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations