Skip to main content
Log in

Force reversed method for locating transition states

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

To identify the transition state accurately and efficiently on a high-dimensional potential energy surface is one of the most important topics in kinetic studies on chemical reactions. We present here an algorithm to search the transition state by so-called force reversed method, which only requires a rough reaction direction instead of knowing the initial state and final state. Compared to the nudged elastic band method and the dimer method that require multiple images, the present algorithm with only single image required saves significantly the computational cost. The algorithm was implemented in the first-principle periodic total energy calculation package and applied successfully to several prototype surface processes such as the adsorbate diffusion and dissociation on metal surfaces. The results indicate that the force reversed method is efficient, robust to identify the transition state of various surface processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hratchian HP, Schlegel HB (2005) In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Finding minima transition states and following reaction pathways on ab initio potential energy surfaces in theory and application of computational chemistry: the first forty years. Elsevier, Amsterdam

  2. Sun JQ, Ruedenberg K (1994) J Chem Phys 101:2157

    Article  CAS  Google Scholar 

  3. Culot P, Dive G, Nguyen VH, Ghuysen JM (1992) Theor Chim Acta 82:189

    Article  CAS  Google Scholar 

  4. Cerjan CJ, Miller WH (1981) J Chem Phys 75:2800

    Article  CAS  Google Scholar 

  5. Maeda S, Ohno K, Morokuma K (2009) J Phys Chem A 113:1704

    Article  CAS  Google Scholar 

  6. Michaelides A, Hu P, Alavi A (1999) J Chem Phys 111:1343

    Article  CAS  Google Scholar 

  7. Wang HF, Liu ZP (2008) J Am Chem Soc 130:10996

    Article  CAS  Google Scholar 

  8. Bofill JM, Anglada JM (2001) Theor Chem Acc 105:463

    Article  CAS  Google Scholar 

  9. Quapp W, Hirsch M, Imig O, Heidrich D (1998) J Computat Chem 19:1087

    Article  CAS  Google Scholar 

  10. Liu ZP, Hu P (2004) Top Catal 28:71

    Article  Google Scholar 

  11. Halgren TA, Lipscomb WN (1977) Chem Phys Lett 49:225

    Article  CAS  Google Scholar 

  12. Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) Comput Mater Sci 28:250

    Article  CAS  Google Scholar 

  13. Ren WEW, Vanden-Eijnden E (2002) Phys Rev B 66:052301

    Google Scholar 

  14. Jónsson H, Mills G, Jacobsen KW (1998) In: Berne BJ, Ciccotti G, Coker DF (eds) Nudged elastic band method for finding minimum energy paths of transitions in classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Google Scholar 

  15. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  16. Henkelman G, Jónsson H (1999) J Chem Phys 111:7010

    Article  CAS  Google Scholar 

  17. Henkelman G, Jóhannesson G, Jónsson H (2000) In: Schwartz SD (ed) Methods for finding saddle points and minimum energy paths in progress on theoretical chemistry and physics. Kluwer Academic, New York

    Google Scholar 

  18. Rothman MJ, Lohr LL (1980) Chem Phys Lett 70:405

    Article  CAS  Google Scholar 

  19. Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P (2006) Phys Rev Lett 97:170201

    Article  Google Scholar 

  20. Fukui K (1981) Acc Chem Res 14:363

    Article  CAS  Google Scholar 

  21. Kresse G, Hafner J (1993) Phys Rev B 48:13115

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533

    Article  CAS  Google Scholar 

  23. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  24. Kresse G, Joubert J (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  25. Eckert F, Werner HJ (1998) Theor Chem Acc 100:21

    Article  CAS  Google Scholar 

  26. Kästner J, Sherwood P (2008) J Chem Phys 128:014106

    Article  Google Scholar 

  27. Soon A, Todorova M, Delley B, Stampfl C (2006) Phys Rev B 73:165424

    Article  Google Scholar 

  28. Xu Y, Mavrikakis M (2001) Surf Sci 494:131

    Article  CAS  Google Scholar 

  29. Habraken FHPM, Kieffer EPh, Bootsma GA (1979) Surf Sci 83:45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant No. 21103165, 20873142, 20733008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Xue Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, K., Zhao, Y., Su, HY. et al. Force reversed method for locating transition states. Theor Chem Acc 131, 1118 (2012). https://doi.org/10.1007/s00214-012-1118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1118-x

Keywords

Navigation