Advertisement

Theoretical Chemistry Accounts

, 131:1117 | Cite as

Theoretical investigation for spectroscopic constants of ground-state alkaline-earth dimers with high accuracy

  • Dong-Dong Yang
  • Fan WangEmail author
Regular Article

Abstract

In this work, we provide highly accurate theoretical estimates for spectroscopic constants of the ground-state alkaline-earth dimers (Ca2, Sr2, and Ba2). Electron correlation energies are calculated with coupled-cluster method at the single, double, and noniterative triple excitations [CCSD(T)] level, and the effects of full triples as well as quadruple excitations are also taken into account at the CCSDT and the CCSDT(Q) level. Our results demonstrate that high-order electron correlation is important to achieve results with high accuracy. We also find that results for Ca2 with counterpoise corrections, which are designed to eliminate the basis set superposition error, deviate further away from those at the complete basis set limit than the uncorrected ones. The calculated binding energies and equilibrium bond lengths for Ca2 and Sr2 are in excellent agreement with recent experimental data. On the other hand, our results for Ba2 are quite different from previous theoretical data, and there is no available experimental equilibrium bond length and binding energy for calibration. Based on the performance of the adopted approach for Ca2 and Sr2, our results should be more reliable and could be helpful for future investigations.

Keywords

Alkaline-earth dimers High-level electron correlation Basis set superposition error (BSSE) 

Notes

Acknowledgments

We thank Prof. Mihály Kállay for providing us the MRCC program package and the National Nature Science Foundation of China (grant no. 20973116) for financial support.

References

  1. 1.
    Dammalapati U, Norris I, Burrows C, Arnold AS, Riis E (2010) Phys Rev A 81:023424CrossRefGoogle Scholar
  2. 2.
    Zelevinsky T, Kotochigova S, Ye J (2008) Phys Rev Lett 100:043201CrossRefGoogle Scholar
  3. 3.
    De S, Dammalapati U, Jungmann K, Willmann L (2009) Phys Rev A 79:041402(R)Google Scholar
  4. 4.
    Kotochigova S, Zelevinsky T, Ye J (2009) Phys Rev A 79:012504CrossRefGoogle Scholar
  5. 5.
    Zelevinsky T, Boyd MM, Ludlow AD, Ido T, Ye J, Ciuryło R, Naidon P, Julienne PS (2006) Phys Rev Lett 96:203201CrossRefGoogle Scholar
  6. 6.
    Machholm M, Julienne PS, Suominen K-A (2001) Phys Rev A 64:033425CrossRefGoogle Scholar
  7. 7.
    Kraft S, Vogt F, Appel O, Riehle F, Sterr U (2009) Phys Rev Lett 103:130401CrossRefGoogle Scholar
  8. 8.
    Stellmer S, Tey MK, Huang B, Grimm R, Schreck F (2009) Phys Rev Lett 103:200401CrossRefGoogle Scholar
  9. 9.
    Balfour WJ, Whitlock RF (1975) Can J Phys 53:472CrossRefGoogle Scholar
  10. 10.
    Vidal CR (1980) J Chem Phys 72:1864CrossRefGoogle Scholar
  11. 11.
    Bergeman T, Liao PF (1980) J Chem Phys 72:886CrossRefGoogle Scholar
  12. 12.
    Gerber G, Möller R, Schneider H (1984) J Chem Phys 8:1538CrossRefGoogle Scholar
  13. 13.
    Allard O, Pashov A, Knöckel H, Tiemann E (2002) Phys Rev A 66:042503CrossRefGoogle Scholar
  14. 14.
    Allard O, Samuelis C, Pashov A, Knöckel H, Tiemann E (2003) Eur Phys J D 26:155CrossRefGoogle Scholar
  15. 15.
    Stein A, Knöckel H, Tiemann E (2008) Phys Rev A 78:042508CrossRefGoogle Scholar
  16. 16.
    Lebeault MA, Viallon J, Boutou V, Chevaleyre J (1998) J Mol Spectr 192:179CrossRefGoogle Scholar
  17. 17.
    Schäfer S, Mehring M, Schäfer R (2007) Phys Rev A 76:052515CrossRefGoogle Scholar
  18. 18.
    Jones RO (1979) J Chem Phys 71:1300CrossRefGoogle Scholar
  19. 19.
    Ortiz G, Ballone P (1991) Phys Rev B 43:6376CrossRefGoogle Scholar
  20. 20.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Mirick JW, Chien C-H, Blaisten-Barojas E (2001) Phys Rev A 63:023202CrossRefGoogle Scholar
  22. 22.
    Pérez-Jordá JM, Becke AD (1995) Chem Phys Lett 233:134CrossRefGoogle Scholar
  23. 23.
    Milet A, Korona T, Moszynski R, Kochanski E (1999) J Chem Phys 111:7727CrossRefGoogle Scholar
  24. 24.
    Allouche AR, Aubert-Frecon M, Nicolas G, Spiegelmann F (1995) Chem Phys 200:63CrossRefGoogle Scholar
  25. 25.
    Boutassetta N, Allouche AR, Aubert-Frecon M (1996) Phys Rev A 53:3845CrossRefGoogle Scholar
  26. 26.
    Wang Y, Flad H-J, Dolg M (2000) J Phys Chem A 104:5558CrossRefGoogle Scholar
  27. 27.
    Czuchaj E, Krośnicki M, Stoll H (2001) Theor Chem Acc 107:27CrossRefGoogle Scholar
  28. 28.
    Czuchaj E, Krośnicki M, Stoll H (2003) Theor Chem Acc 110:28CrossRefGoogle Scholar
  29. 29.
    Czuchaj E, Krośnicki M, Stoll H (2003) Chem Phys Lett 371:401CrossRefGoogle Scholar
  30. 30.
    Bussery-Honvault B, Launay JM, Moszynski R (2003) Phys Rev A 68:032718CrossRefGoogle Scholar
  31. 31.
    Kotochigova S (2008) J Chem Phys 128:024303CrossRefGoogle Scholar
  32. 32.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Patkowski K, Podeszwa R, Szalewicz K (2007) J Phys Chem A 111:12822CrossRefGoogle Scholar
  35. 35.
    Mitin AV (2009) Russ J Phys Chem A 83:1160CrossRefGoogle Scholar
  36. 36.
    Li P, Xie W, Tang KT (2010) J Chem Phys 133:084308Google Scholar
  37. 37.
    Yang DD, Li P, Tang KT (2009) J Chem Phys 131:154301CrossRefGoogle Scholar
  38. 38.
    Yin GP, Li P, Tang KT (2010) J Chem Phys 132:074303CrossRefGoogle Scholar
  39. 39.
    Li P, Ren J, Niu N, Tang KT (2011) J Phys Chem A 115:6927CrossRefGoogle Scholar
  40. 40.
    Noga J, Bartlett RJ (1987) J Chem Phys 86:7041CrossRefGoogle Scholar
  41. 41.
    Kállay M, Surján PR (2001) J Chem Phys 115:2945CrossRefGoogle Scholar
  42. 42.
    Bomble YJ, Stanton JF, Kállay M, Gauss J (2005) J Chem Phys 123:054101CrossRefGoogle Scholar
  43. 43.
    Kállay M, Gauss J (2005) J Chem Phys 123:214105CrossRefGoogle Scholar
  44. 44.
    Pahl E, Figgen D, Thierfelder C, Peterson KA, Calvo F, Schwerdtfeger P (2010) J Chem Phys 132:114301CrossRefGoogle Scholar
  45. 45.
    Pahl E, Figgen D, Borschevsky A, Peterson KA, Schwerdtfeger P (2011) Theor Chem Acc 129:651CrossRefGoogle Scholar
  46. 46.
    Koput J, Peterson KA (2002) J Phys Chem A 106:9595CrossRefGoogle Scholar
  47. 47.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639CrossRefGoogle Scholar
  48. 48.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  49. 49.
    Kutzelnigg W (1989) Z Phys D 11:15CrossRefGoogle Scholar
  50. 50.
    Kutzelnigg W (1990) Z Phys D 15:27CrossRefGoogle Scholar
  51. 51.
    Stopkowicz S, Gauss J (2008) J Chem Phys 129:164119CrossRefGoogle Scholar
  52. 52.
  53. 53.
    Lim IS, Stoll H, Schwerdtfeger P (2006) J Chem Phys 124:034107CrossRefGoogle Scholar
  54. 54.
    Wang F, Gauss J, van Wüllen C (2008) J Chem Phys 129:064113CrossRefGoogle Scholar
  55. 55.
    Liu B, McLean AD (1973) J Chem Phys 59:4557CrossRefGoogle Scholar
  56. 56.
    Boys F, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  57. 57.
    CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum chemical program package by Stanton JF, Gauss J, Harding ME, Szalay PG with contributions from Auer AA, Bartlett RJ, Benedikt U, Berger C, Bernholdt DE, Bomble YJ, Cheng L, Christiansen O, Heckert M, Heun O, Huber C, Jagau T-C, Jonsson D, Jusélius J, Klein K, Lauderdale WJ, Matthews DA, Metzroth T, Mück LA, O’Neill DP, Price DR, Prochnow E, Puzzarini C, Ruud K, Schiffmann F, Schwalbach W, Stopkowicz S, Tajti A, Vázquez J, Wang F, Watts JD and the integral packages MOLECULE (Almlöf J and Taylor PR), PROPS (Taylor PR), ABACUS (Helgaker T, Jensen HJ Aa, Jørgensen P, and Olsen J) and ECP routines by Mitin AV and Wüllen C van. (For the current version, see http://www.cfour.de)
  58. 58.
    MRCC, a string-based quantum chemical program suite written by Kállay M. See also Kállay M, Surján PR (2001) J Chem Phys 115:2945 as well as http://www.mrcc.hu
  59. 59.
    Dunham JL (1932) Phys Rev 41:721CrossRefGoogle Scholar
  60. 60.
    Herschbach DR, Laurie VW (1961) J Chem Phys 35:458CrossRefGoogle Scholar
  61. 61.
    Bouissou T, Durand G, Heitz M-C, Spiegelman F (2010) J Chem Phys 133:164317CrossRefGoogle Scholar
  62. 62.
    Dunning TH Jr (2000) J Phys Chem A 104:9062CrossRefGoogle Scholar
  63. 63.
    Alvarez-Idaboy JR, Galano A (2010) Theor Chem Acc 126:75CrossRefGoogle Scholar
  64. 64.
    Kaupp M, Schleyer PvR, Stoll H, Preuss H (1991). J Chem Phys 94:1360Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.College of Chemistry, Sichuan UniversityChengduPeople’s Republic of China

Personalised recommendations