Theoretical Chemistry Accounts

, 131:1116 | Cite as

Comparative study on the Al–Al multiple bond in Na2[Arx′AlAlArx′] and H2[Arx′AlAlArx′] (Arx′ = C6H3-2, 6-(C6H5)2)

  • Xiaoyan Li
  • Jie Sun
  • Lingpeng Meng
  • Yanli Zeng
  • Shijun ZhengEmail author
Regular Article


The Al–Al multiple bond in Na2[Arx′AlAlArx′] (Arx′ = C6H3-2,6-(C6H5)2) was investigated and compared with H2[Arx′AlAlArx′] by electron localization function (ELF) method. The roles of sodium, hydrogen atoms, and bulky ligands in these two complexes were also discussed. The calculated results show that Na2[Arx′AlAlArx′] and H2[Arx′AlAlArx′] have different structural and electronic features. In Na2[Arx′AlAlArx′], the Al–Al bond includes a σ bond, a normal π bond and a slipped π bond. In H2[Arx′AlAlArx′], the direct Al–Al bond was substituted by two 3-center, 2-electron (3c–2e) bridged bonding, which formed by the hydrogen and two aluminum atoms. The bulky ligands play important stabilizing roles in both Na2[Arx′AlAlArx′] and H2[Arx′AlAlArx′].


Al–Al bond Hydrogen bridged bond Topological analysis of electron density Electron localization function 



This work was supported by the National Natural Science Foundation of China (Contract No: 20973053, 21073051, 21102033, 21171047), the Natural Science Foundation of Hebei Province (Contract No. B2010000371, B2011205058) and the Education Department Foundation of Hebei Province (ZD2010126).


  1. 1.
    Uhl WZ (2008) Naturforsch B 43:1113–1118Google Scholar
  2. 2.
    Wright RJ, Brynda M, Power PP (2006) Angew Chem Int Ed 45:5953–5956CrossRefGoogle Scholar
  3. 3.
    Power PP (1998) J Chem Soc: 2939–2951 (trans: Dalton)Google Scholar
  4. 4.
    Power PP (1999) Chem Rev 99:3463–3504CrossRefGoogle Scholar
  5. 5.
    Weidenbruch MJ (2002) Organomet Chem 646:39–52CrossRefGoogle Scholar
  6. 6.
    Uhl W (1997) Coord Chem Rev 163:1–32CrossRefGoogle Scholar
  7. 7.
    Uhl W (1998) Rev Inorg Chem 18:239–282CrossRefGoogle Scholar
  8. 8.
    Linti G, Schnöckel H (2000) Coord Chem Rev 206:285CrossRefGoogle Scholar
  9. 9.
    Schnöckel H, Schnepf A (2001) Adv Organomet Chem 47:235–281CrossRefGoogle Scholar
  10. 10.
    Robinson GH (1999) Acc Chem Rev 32:773–782CrossRefGoogle Scholar
  11. 11.
    Weidenbruch M (2003) Angew Chem 115:2322–2324; Angew Chem Int Ed 42:2222Google Scholar
  12. 12.
    Bridgeman AJ, Ireland LR (2001) Polyhedron 20:2841–2851Google Scholar
  13. 13.
    Himmel HJ, Schnöckel H (2002) Chem Eur J 8:2397–2405CrossRefGoogle Scholar
  14. 14.
    Takagi N, Schmidt MW, Nagase S (2001) Organometallics 20:1646–1651CrossRefGoogle Scholar
  15. 15.
    Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Popelier P (2000) Atoms in molecules: an introduction. UMIST, ManchesterGoogle Scholar
  17. 17.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5387–5403Google Scholar
  18. 18.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  19. 19.
    Savin A, Nesper R, Wengert S, Fassler T (1997) Angew Chem Int Ed Engl 36:1808–1832CrossRefGoogle Scholar
  20. 20.
    Sorkin A, Truhlar DG, Amin EA (2009) J Chem Theory Comput 5:1254–1265CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, revision D.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  22. 22.
    Keith TA (2010) AIMAll. Version 10(05):04Google Scholar
  23. 23.
    Noury S, Krokidis X, Fuster F, Silvi B (1997) TopMod package, ParisGoogle Scholar
  24. 24.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Comp Chem 23:597–604CrossRefGoogle Scholar
  25. 25.
    Lu T (2011) Multiwfn: a multifunctional wavefunction analyzer, version 2.1.2,
  26. 26.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  27. 27.
    Molina JM, Dobado JA, Heard GL, Bader RFW, Sundberg MR (2001) Theor Chem Acc 150:365–373Google Scholar
  28. 28.
    Andrés J, Berski S, Feliz M, Llusar R, Sensato F, Silvi B (2005) C R Chimie 8:1400–1412CrossRefGoogle Scholar
  29. 29.
    Savin A, Nesper R, Wengert S, Fässler T (1997) Angew Chem Int Ed Engl 36:1808–1832CrossRefGoogle Scholar
  30. 30.
    Bianchi R, Gervasio G, Marabello D (2000) Inorg Chem 39:2360–2366CrossRefGoogle Scholar
  31. 31.
    Macchi P, Proserpio DM, Sironi A (1998) J Am Chem Soc 120:13429–13435CrossRefGoogle Scholar
  32. 32.
    Bianchi R, Gervasio G, Marabello D (1998) Chem Commun 15:1535–1536CrossRefGoogle Scholar
  33. 33.
    Sanz P, Yanez M, Mó O (1998) J Phys Chem A 106:4661–4668CrossRefGoogle Scholar
  34. 34.
    Hazra AB, Pal S (2000) J Mol Struct (Theochem) 497:157–163CrossRefGoogle Scholar
  35. 35.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  36. 36.
    Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628CrossRefGoogle Scholar
  37. 37.
    Cotton FA, Cowley AH, Feng XJ (1998) J Am Chem Soc 120:1795–1799CrossRefGoogle Scholar
  38. 38.
    Macchia GL, Gagliardi L, Power PP, Brynda M (2008) J Am Chem Soc 130:5104–5114CrossRefGoogle Scholar
  39. 39.
    Grützmacher H, Fässler TF (2000) Chem Eur J 6:2317–2324CrossRefGoogle Scholar
  40. 40.
    Silvi B (2002) J Mol Struct 4614:3–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Xiaoyan Li
    • 1
  • Jie Sun
    • 1
  • Lingpeng Meng
    • 1
  • Yanli Zeng
    • 1
  • Shijun Zheng
    • 1
    Email author
  1. 1.College of Chemistry, Institute of Computational Quantum ChemistryHebei Normal UniversityShijiazhuangChina

Personalised recommendations