Advertisement

Theoretical Chemistry Accounts

, 131:1111 | Cite as

Electrically polarized valence basis sets for the SBKJC effective core potential developed for calculations of dynamic polarizabilities and Raman intensities

  • Luciano N. VidalEmail author
  • Pedro A. M. Vazquez
Regular Article

Abstract

Sadlej’s electric polarization method of Gaussian basis functions was applied to the double-zeta effective core potential basis sets of Stevens, Basch, Krauss, Jasien and Cundari to generate a new augmented polarized valence double-zeta set, named as pSBKJC, which is appropriate for the calculation of dynamic polarizabilities and Raman intensities. The pSBKJC basis set was developed for the atoms of families 14–17 (from C to F, Si to Cl, Ge to Br and Sn to I). In order to assess the performance of this new basis set, these properties were compared to those evaluated using Sadlej’s set, available in the EMSL online library under the name of Sadlej-pVTZ. In these tests, Hartree-Fock/pSBKJC calculations have proved to be less demanding of the computer than the Hartree-Fock/Sadlej-pVTZ ones but give results in excellent agreement with those from the Sadlej-pVTZ basis set. Since the Stevens et al. pseudopotential can represent the scalar relativistic effects, the results obtained at the Hartree-Fock/pSBKJC level show a better agreement with the results of Dirac-Hartree-Fock/Sadlej-pVTZ relativistic calculations using Dyall’s spin-free Hamiltonian. When comparing Hartree-Fock/pSBKJC data of Raman scattering activities, at the excitation wavelength of 488 nm, with those of spin-free Dirac-Hartree-Fock/Sadlej-pVTZ calculations, a very good agreement is observed, where the RMS error is 8.5 Å4a.m.u.−1 and the averaged percentage error is 3.4%. In terms of computer savings in calculations of dynamic Raman intensities, a 20% reduction in the CPU time in the coupled cluster singles and doubles intensities of C6H6 and about 40% reduction in the time-dependent Hartree-Fock intensities for C6F6 molecules were attained.

Keywords

Raman spectroscopy Static and dynamical polarizabilities Relativistic effects Ab initio electronic structure ECP basis set 

Notes

Acknowledgments

The authors thank the National Center for High Performance Computing in São Paulo (CENAPAD-SP) for computer time. LNV thanks the National Council for Scientific and Technological Development (CNPq) for a doctoral fellowship. The basis sets can be obtained directly from the authors: contact LNV at lnvidal@utfpr.edu.br or PAMV at vazquez@iqm.unicamp.br.

References

  1. 1.
    Asher SA, Johnson CR (1985) J Phys Chem 89:1375CrossRefGoogle Scholar
  2. 2.
    de Miranda SG, Vazquez PAM (2002) J Braz Chem Soc 13:324CrossRefGoogle Scholar
  3. 3.
    Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley, LTD, ChichesterGoogle Scholar
  4. 4.
    Placzek G (1959) The Rayleigh and Raman scattering. United States Atomic Energy Commision, Lawrence Radiation Laboratory, University of California, Livermore, California, UCRL Translation No. 526 (L), PhysicsGoogle Scholar
  5. 5.
    Komornicki A, McIver Jr JW (1979) J Chem Phys 70:2014CrossRefGoogle Scholar
  6. 6.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  7. 7.
    Gaussian 98, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian, Inc., Pittsburgh PA, 2001Google Scholar
  8. 8.
    Olsen J, Jørgensen P (1985) J Chem Phys 82:3235CrossRefGoogle Scholar
  9. 9.
    Jørgensen P, Jensen HJA, Olsen J (1988) J Chem Phys 89:3654CrossRefGoogle Scholar
  10. 10.
    Christiansen O, Halkier A, Koch H, Jørgensen P, Helgaker T (1998) J Chem Phys 108:2801CrossRefGoogle Scholar
  11. 11.
    Hättig C, Christiansen O, Jørgensen P (1997) J Chem Phys 107:10592CrossRefGoogle Scholar
  12. 12.
    Sałek P, Vahtras O, Helgaker T, Ågren H (2002) J Chem Phys 117:9630CrossRefGoogle Scholar
  13. 13.
    Caillie CV, Amos RD (2000) Phys Chem Chem Phys 2:2123CrossRefGoogle Scholar
  14. 14.
    Pecul M, Rizzo A (2002) J Chem Phys 116:1259CrossRefGoogle Scholar
  15. 15.
    Neugebauer J, Reiher M, Hess BA (2002) J Chem Phys 117:8623CrossRefGoogle Scholar
  16. 16.
    Vidal LN, Vazquez PAM (2003) Quim Nova 26:507CrossRefGoogle Scholar
  17. 17.
    Vidal LN, Vazquez PAM (2005) Int J Quantum Chem 103:632CrossRefGoogle Scholar
  18. 18.
    Quinet O, Champagne B (2001) J Chem Phys 115:6293CrossRefGoogle Scholar
  19. 19.
    O’Neill DP, Kállay M, Gauss J (2007) Mol Phys 105:2447CrossRefGoogle Scholar
  20. 20.
    Pecul M, Coriani S (2002) Chem Phys Lett 355:327CrossRefGoogle Scholar
  21. 21.
    Pecul M, Rizzo A (2003) Chem Phys Lett 370:578CrossRefGoogle Scholar
  22. 22.
    Vidal LN, Vazquez PAM (2006) Chem Phys 321:209CrossRefGoogle Scholar
  23. 23.
    Corni S, Cappelli C, Cammi R, Tomasi J (2001) J Phys Chem A 105:8310CrossRefGoogle Scholar
  24. 24.
    Sadlej AJ (1988) Collect Czech Chem Commun 53:1995CrossRefGoogle Scholar
  25. 25.
    Sadlej AJ (1991) Theor Chim Acta 79:123CrossRefGoogle Scholar
  26. 26.
    Sadlej AJ (1992) Theor Chim Acta 81:45CrossRefGoogle Scholar
  27. 27.
    Sadlej AJ (1992) Theor Chim Acta 81:339CrossRefGoogle Scholar
  28. 28.
    Feller D (1996) J Comput Chem 17:1571Google Scholar
  29. 29.
    Schuchardt KL, Didier BT, Elsethagen T, Sun LS, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045CrossRefGoogle Scholar
  30. 30.
    Vidal LN (2004) Master Thesis. State University of Campinas, Campinas, SP, BrazilGoogle Scholar
  31. 31.
    Oakes RE, Bell SEJ, Benkova Z, Sadlej AJ (2005) J Comput Chem 26:154CrossRefGoogle Scholar
  32. 32.
    Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026CrossRefGoogle Scholar
  33. 33.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612CrossRefGoogle Scholar
  34. 34.
    Cundari TR, Stevens WJ (1993) J Chem Phys 98:5555CrossRefGoogle Scholar
  35. 35.
    (2005) Dalton, a molecular electronic structure program. Release 2.0, see http://www.kjemi.uio.no/software/dalton/dalton.html
  36. 36.
    Jensen HJA, Saue T, Visscher L, with contributions from Bakken V, Eliav E, Enevoldsen T, Fleig T, Fossgaard O, Helgaker TU, Lærdahl J, Larsen CV, Norman P, Olsen J, Pernpointner M, Pedersen JK, Ruud K, Sałek P, van Stralen JNP, Thyssen J, Visser O, Winther T (2004) DIRAC, a relativistic ab initio electronic structure program. Release DIRAC04.0, see http://dirac.chem.sdu.dk)
  37. 37.
    Douglas M, Kroll NM (1974) Ann Phys 82:89CrossRefGoogle Scholar
  38. 38.
    Hess BA (1985) Phys Rev A 32:756CrossRefGoogle Scholar
  39. 39.
    Hess BA (1986) Phys Rev A 33:3742CrossRefGoogle Scholar
  40. 40.
    Benkova Z, Sadlej AJ, Oakes RE, Bell SEJ (2004) J Comput Chem 26:145CrossRefGoogle Scholar
  41. 41.
    Peterson KA (2003) J Chem Phys 119:11099CrossRefGoogle Scholar
  42. 42.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113CrossRefGoogle Scholar
  43. 43.
    Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101CrossRefGoogle Scholar
  44. 44.
    Figgen D, Peterson KA, Dolg M, Stoll H (2009) J Chem Phys 130:164108CrossRefGoogle Scholar
  45. 45.
    Shimanouchi T (2001) Molecular vibrational frequencies. In: NIST Chemistry WebBook, No. 69 in NIST Standard Reference Database (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2001), http://webbook.nist.gov
  46. 46.
    Fernández-Sánchez JM, Montero S (1989) J Chem Phys 90:2909CrossRefGoogle Scholar
  47. 47.
    Keefe CD, Innis SM (2006) J Mol Struct 785:192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Chemistry and Biology DepartmentFederal Technological University of ParanáCuritibaBrazil
  2. 2.Physical-Chemistry Department, Chemistry InstituteState University of CampinasCampinasBrazil

Personalised recommendations