Theoretical Chemistry Accounts

, 131:1110 | Cite as

Theoretical studies on anionic clusters of sulfate anions and carbon dioxide, SO 4 −1/−2 (CO2) n , n = 1−4

  • Friedrich GreinEmail author
  • Daniel M. Chevrier
Regular Article


Geometry optimizations were performed on monoanionic and dianionic clusters of sulfate anions with carbon dioxide, SO 4 −1/−2 (CO2) n , for n = 1–4, using the B3PW91 density functional method with the 6-311 + G(3df) basis set. Limited calculations were carried out with the CCSD(T) and MP2 methods. Binding energies, as well as adiabatic and vertical electron detachment energies, were calculated. No covalent bonding is seen for monoanionic clusters, with O3SO–CO2 bond distances between 2.8 and 3.0 Å. Dianionic clusters show covalent bonding of type [O3S–O–CO2]−2, [O3S–O–C(O)O–CO2]−2, and [O2C–O–S(O2)–O–CO2]−2, where one or two oxygens of SO 4 −2 are shared with CO2. Starting with n = 2, the dianionic clusters become adiabatically more stable than the corresponding monoanionic ones. Comparison with SO 4 −1/−2 (SO2) n and CO 3 −1/−2 (SO2) n clusters, the binding energies are smaller for the present SO 4 −1/−2 (CO2) n systems, while stabilization of the dianion occurs at n = 2 for both SO 4 −2 (CO2) n and SO 4 −2 (SO2) n , but only at n = 3 for CO 3 −2 (SO2) n .


Sulfate-carbon dioxide clusters Dianions Monoanions Dianion stabilization Electron detachment energies Covalent bonding in clusters Weakly bonded complexes Density functional methods Coupled cluster methods 



The authors are indebted to Drs. Jack Passmore and Pablo Bruna for reading the manuscript and providing useful comments. Thanks to Robbie Weale for helping with the structures, and to Sonya Burrill for literature studies. Financial support provided by NSERC (Canada) is gratefully acknowledged. Excellent computing facilities have been made available through ACEnet.


  1. 1.
    Boldyrev AI, Simons J (1994) J Phys Chem 98:2298–2300CrossRefGoogle Scholar
  2. 2.
    Boldyrev, A I, Gutowski M, Simons J (1996) Acc Chem Res 29:497–502, and references thereinGoogle Scholar
  3. 3.
    Dreuw A, Cederbaum LS (2002) Chem Rev 102:181–200CrossRefGoogle Scholar
  4. 4.
    Born M (1920) Zeitschrift f Physik 1:45–48CrossRefGoogle Scholar
  5. 5.
    Blades AT, Kebarle P (1994) J Am Chem Soc 116:10761–10766CrossRefGoogle Scholar
  6. 6.
    Wang X-B, Nicholas JB, Wang L-S (2000) J Chem Phys 113:10837–10840CrossRefGoogle Scholar
  7. 7.
    Wang X-B, Yang X, Wang L-S (2001) Science 294:1322–1325CrossRefGoogle Scholar
  8. 8.
    Wang X-B, Sergeeva AP, Yang J, Xing X-P, Boldyrev AI, Wang L-S (2009) J Phys Chem A 113:5567–5576CrossRefGoogle Scholar
  9. 9.
    Pathak AK, Mukherjee T, Maity DK (2008) Synth React Inorg Met-Org Nano Met Chem 38:76–83Google Scholar
  10. 10.
    Wang X, Yang X, Nicholas JB, Wang L (2003) J Chem Phys 119:3631–3640CrossRefGoogle Scholar
  11. 11.
    Wicke H, Meleshyn A (2010) J Phys Chem 114:8948–8960Google Scholar
  12. 12.
    Chan J, Grein F (2011) Comp Theor Chem 966:225–231CrossRefGoogle Scholar
  13. 13.
    Grein F, Chan JK, Lido I (2010) Can J Chem 88:1125–1135CrossRefGoogle Scholar
  14. 14.
    Hiraoka K, Yamabe SJ (1992) Chem Phys 97:643–650Google Scholar
  15. 15.
    Lezius M, Rauth T, Grill V, Foltin M, Maerk TD (1992) Z Phys D 24:289–296CrossRefGoogle Scholar
  16. 16.
    Arnold DW, Bradforth SE, Kim EH, Neumark DM (1995) J Chem Phys 102:3510–3518CrossRefGoogle Scholar
  17. 17.
    Arnold DW, Bradforth SE, Kim EH, Neumark DM (1995) J Chem Phys 102:3493–3509CrossRefGoogle Scholar
  18. 18.
    Pathak AK, Mukherjee T, Maity DK (2008) J Phys Chem A 112:12037–12044CrossRefGoogle Scholar
  19. 19.
    Muraoka A, Inokuchi Y, Hammer NI, Shin J-W, Johnson MA, Nagata T (2009) J Phys Chem A 113:8942–8948CrossRefGoogle Scholar
  20. 20.
    Tsukuda T, Hirose T, Nagata T (1997) Int J Mass Spectrom Ion Proc 171:273–280CrossRefGoogle Scholar
  21. 21.
    Oliaee JN, Dehghany M, Moazzen-Ahmadi N, McKellar ARW (2011) Phys Chem Chem Phys 13:1297–1300CrossRefGoogle Scholar
  22. 22.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G, A Ayala P Y, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03 Gaussian Inc, Pittsburgh, PAGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  25. 25.
    Bruna PJ, Grein F, Passmore J (2011) Can J Chem 89:671–687CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of New BrunswickFrederictonCanada
  2. 2.Chemistry DepartmentDalhousie UniversityHalifaxCanada

Personalised recommendations