Advertisement

Theoretical Chemistry Accounts

, 131:1108 | Cite as

Theoretical studies on the chemical decomposition of 5-aza-2′-deoxycytidine: DFT study and Monte Carlo simulation

  • Jie Ying Gao
  • Xin Yang
  • Chan Kyung Kim
  • Ying XueEmail author
Regular Article

Abstract

The decomposition mechanism of 5-Aza-2′-deoxycytidine has been studied by the use of computational techniques. Optimized structures for all of the stationary points in the gas phase were investigated at B3LYP/6-31+G(d,p) level of theory. Single-point energies were determined employing the ab initio MP2 method in conjunction with the 6-311++G(d,p) basis set. Five possible pathways, paths 1–5, were evaluated. In each pathway, the direct (A-paths 1–5) and water-assisted (B-paths 1–5) processes were considered. Meanwhile, the local microhydration model with the direct participation of three water molecules around the reaction centers was adopted to mimic the system for the water-assisted decomposition mechanisms above, where one water molecule is the nucleophilic reactant and the other two are the auxiliary molecules located on each side of the nucleophilic water. The results in the gas phase exhibit that the energy barriers of the water-assisted pathways based on the local microhydration model decrease dramatically by about 15–20 kcal/mol as compared with those of the direct pathways because of the contribution of the auxiliary water molecules. In addition, bulk solvent effects of water were determined by means of the self-consistent reaction field based on the conductor-like polarized continuum model and Monte Carlo simulation with free energy perturbation (MC-FEP) technique, respectively. Our computational results indicate that B-path 3 in the decomposition reaction of 5-azadC is the most favorable, where the calculated rate constant (1.68 × 10−3 min−1) using the MC-FEP method is within the range of the experimentally determined values [(5.89 ± 0.54) × 10−3 min−1 by UV and (1.46 ± 0.08) × 10−3 min−1 by NMR].

Keywords

5-Aza-2′-deoxycytidine Decomposition mechanism Microhydration model Self-consistent reaction field Monte Carlo simulation 

Notes

Acknowledgments

This project has been supported by the National Natural Science Foundation of China (Grant Nos. 21173151 and 20835003).

Supplementary material

214_2012_1108_MOESM1_ESM.doc (903 kb)
The optimized Cartesian coordinates and geometrical structures of all stationary points along the potential energy profile. Supplementary material 1 (DOC 903 kb)

References

  1. 1.
    Sorm F, Piskala A, Cihak A, Vesely J (1964) Experientia 20:202–203CrossRefGoogle Scholar
  2. 2.
    Issa J-P, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J, Rosenfeld CS, Cortes J, Kantarjian HM (2004) Blood 103:1635–1640CrossRefGoogle Scholar
  3. 3.
    Balch C, Yan P, Craft T, Young S, Skalnik DG, Huang TH, Nephew KP (2005) Mol Cancer Ther 4:1505–1514CrossRefGoogle Scholar
  4. 4.
    Ruter B, Wijermans PW, Lubbert M (2006) Cancer 106:1744–1750CrossRefGoogle Scholar
  5. 5.
    Kantarjian H (2006) Issa J-P J, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J, Klimek V, Slack J, de Castro C, Ravandi F, Helmer R, Shen L, Nimer SD Leavitt R, Raza A, Saba H. Cancer 106:1794–1803CrossRefGoogle Scholar
  6. 6.
    Momparler RL, Bouffard DY, Momparler LF (1997) Anticancer Drugs 8:358–368CrossRefGoogle Scholar
  7. 7.
    Thibault A, Figg WD, Bergan RC, Lush RM, Myers CE, Tompkins A, Reed E, Samid D (1998) Tumori 84:87–89Google Scholar
  8. 8.
    Jubb AM, Bell SM, Quirke PJ (2001) Pathol 195:111–134CrossRefGoogle Scholar
  9. 9.
    Jüttermann R, Li E, Jaenisch R (1994) Proc Natl Acad Sci USA 91:11797–11801CrossRefGoogle Scholar
  10. 10.
    Christman JK (2002) Oncogene 21:5483–5495CrossRefGoogle Scholar
  11. 11.
    Cho HJ, Kim SY, Kim KH, Kang WK, Kim JI, Oh ST, Kim JS, An CH (2009) World J Surg Onc 7:49–55CrossRefGoogle Scholar
  12. 12.
    Schermelleh L, Spada F, Easwaran HP, Zolghadr K, Margot JB, Cardoso MC, Leonhardt H (2005) Nat Methods 2:751–756CrossRefGoogle Scholar
  13. 13.
    Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST (2005) Mol Cell Biol 25:4727–4741CrossRefGoogle Scholar
  14. 14.
    Patel K, Dickson J, Din S, Macleod K, Jodrell D, Ramsahoye B (2010) Nucleic Acids Res 38:4313–4324CrossRefGoogle Scholar
  15. 15.
    Lin K-T, Momparler RL, Rivard GE (1981) J Pharm Sci 70:1228–1232CrossRefGoogle Scholar
  16. 16.
    Vesely J, Piskala A (1984) Cancer Res 44:5165–5168Google Scholar
  17. 17.
    Liu ZF, Marcucci G, Byrd JC, Grever M, Xiao J, Chan KK (2006) Rapid Commun Mass Spectrom 20:1117–1126CrossRefGoogle Scholar
  18. 18.
    Pithová P, Pískala A, Pitha J, Šorm F (1965) Collect Czech Chem Commun 30:2801–2811Google Scholar
  19. 19.
    Rogstad DK, Herring JL, Theruvathu JA, Burdzy A, Perry CC, Neidigh JW, Sowers LC (2009) Chem Res Toxicol 22:1194–1204CrossRefGoogle Scholar
  20. 20.
    Gao JY, Zeng Y, Zhang CH, Xue Y (2009) J Phys Chem A 113:325–331CrossRefGoogle Scholar
  21. 21.
    Xue Y, Kim CK (2003) J Phys Chem A 107:7945–7951CrossRefGoogle Scholar
  22. 22.
    Xue Y, Kim CK, Guo Y, Xie DQ, Yan GS (2005) J Comput Chem 26:994–1005CrossRefGoogle Scholar
  23. 23.
    Xue Y, Zhang H, Xie DQ, Yan GS (2005) Chem J Chin U 26:907Google Scholar
  24. 24.
    Wu Y, Xue Y, Xie DQ, Kim CK, Yan GS (2007) J Phys Chem B 111:2357–2364CrossRefGoogle Scholar
  25. 25.
    Xia XF, Zhang CH, Xue Y, Kim CK, Yan GS (2008) J Chem Theory Comput 4:1643–1653CrossRefGoogle Scholar
  26. 26.
    Chen ZQ, Xue Y (2010) J Phys Chem B 114:12641–12654CrossRefGoogle Scholar
  27. 27.
    Fukui K (1970) J Phys Chem 74:4161–4163CrossRefGoogle Scholar
  28. 28.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2005) Gaussian 03. Version D01. Gaussian, Inc., Wallingford CTGoogle Scholar
  30. 30.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  31. 31.
    Jorgensen WL, Ravimohan C (1985) J Chem Phys 83:3050–3054CrossRefGoogle Scholar
  32. 32.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Kelin ML (1983) J Chem Phys 79:926–935CrossRefGoogle Scholar
  33. 33.
    Duffy EM, Severance DL, Jorgensen WL (1992) J Am Chem Soc 114:7535–7542CrossRefGoogle Scholar
  34. 34.
    Kaminski GA, Jorgensen WL (1998) J Phys Chem B 102:1787–1796CrossRefGoogle Scholar
  35. 35.
    Jorgensen WL (1986) J Phys Chem 90:1276–1284CrossRefGoogle Scholar
  36. 36.
    Zwanzig RW (1954) J Chem Phys 22:1420–1426CrossRefGoogle Scholar
  37. 37.
    Jorgensen WL, Tirado-Rives J (2005) J Comput Chem 26:1689–1700CrossRefGoogle Scholar
  38. 38.
    Eyring H (1935) Chem Rev 17:65–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Jie Ying Gao
    • 1
  • Xin Yang
    • 1
  • Chan Kyung Kim
    • 2
  • Ying Xue
    • 1
    • 3
    Email author
  1. 1.College of ChemistryKey Lab of Green Chemistry and Technology in Ministry of Education, Sichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of ChemistryInha UniversityIncheonKorea
  3. 3.State Key Laboratory of BiotherapySichuan UniversityChengduPeople’s Republic of China

Personalised recommendations