Theoretical Chemistry Accounts

, 131:1107 | Cite as

Ruthenium(II) complexes with new large-surface ligands based on electron-accepting expanded pyridiniums: insights from density functional theory

  • Samira Zeroual
  • Nathalie Bouet
  • Fabien Tuyèras
  • Cyril Peltier
  • Nadia Ouddai
  • Philippe Ochsenbein
  • Carlo Adamo
  • Philippe P. LainéEmail author
  • Ilaria CiofiniEmail author
Regular Article


With the aim of designing new inorganic photosensitizers for photovoltaic applications, the structural and electronic properties of two Ru(II) complexes containing terpyridine-based ligands derived from expanded pyridiniums both branched—polyphenyl—and fused—polycyclic—were investigated by the means of density functional theory (DFT) and time-dependent DFT (TD-DFT). In particular, the structure and electronic absorption of the fused architectures—including the isolated ligand and its complex—were compared with those of their respective branched precursors with the aim to account for the their enhanced electronic features in the visible spectral region. The theoretical insights gained into the “large-surface” ligand and its associated complex open the route for a joint experimental and theoretical design of new inorganic photosensitizers based on fused expanded pyridiniums.


DFT TD-DFT Ruthenium(II) complexes Expanded pyridinium acceptors 



The ANR is gratefully acknowledged for financial support in the framework of the NEXUS project (Programme Blanc 2007, BLAN07-1-196405). Dr Jérôme Fortage is acknowledged for fruitful discussions.

Supplementary material

214_2012_1107_MOESM1_ESM.docx (686 kb)
Supplementary material 1 (DOCX 686 kb)


  1. 1.
    Balzani V, Credi A, Venturi M (2009) Chem Soc Rev 38:1542–1550CrossRefGoogle Scholar
  2. 2.
    Lainé PP, Campagna S, Loiseau F (2008) Coord Chem Rev 252:2552–2571CrossRefGoogle Scholar
  3. 3.
    Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Coord Chem Rev 84:85–277CrossRefGoogle Scholar
  4. 4.
    Anderson PA, Keene FR, Meyer TJ, Moss JA, Strouse GF, Treadway JA (2002) J Chem Soc Dalton Trans 3820–3831Google Scholar
  5. 5.
    Nazeeruddin MdK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624CrossRefGoogle Scholar
  6. 6.
    Browne WR, O’Boyle NM, McGarvey JJ, Vos JG (2005) Chem Soc Rev 34:641–663CrossRefGoogle Scholar
  7. 7.
    Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996) Chem Rev 96:759–833CrossRefGoogle Scholar
  8. 8.
    Herrera JM, Pope SJA, Meijer AJHM, Easun TL, Adams H, Alsindi WZ, Sun XZ, George MW, Faulkner S, Ward MD (2007) J Am Chem Soc 129:11491–11504CrossRefGoogle Scholar
  9. 9.
    Glazer EC, Tor Y (2002) Angew Chem Int Ed 41:4022–4026CrossRefGoogle Scholar
  10. 10.
    Draper SM, Gregg DJ, Schofield ER, Browne WR, Duati M, Vos JG, Passaniti P (2004) J Am Chem Soc 126:8694–8701CrossRefGoogle Scholar
  11. 11.
    Draper SM, Gregg DJ, Madathil R (2002) J Am Chem Soc 124:3486–3487CrossRefGoogle Scholar
  12. 12.
    Gregg DJ, Bothe E, Holfer P, Passaniti P, Draper SM (2005) Inorg Chem 44:5654–5660CrossRefGoogle Scholar
  13. 13.
    Lainé PP, Bedioui F, Loiseau F, Chiorboli C, Campagna S (2006) J Am Chem Soc 128:7510–7521CrossRefGoogle Scholar
  14. 14.
    Lainé PP, Loiseau F, Campagna S, Ciofini I, Adamo C (2006) Inorg Chem 45:5538–5551CrossRefGoogle Scholar
  15. 15.
    Lainé PP, Ciofini I, Ochsenbein P, Amouyal E, Adamo C, Bedioui F (2005) Chem Eur J 11:3711–3727CrossRefGoogle Scholar
  16. 16.
    Ciofini I, Lainé PP, Bedioui F, Adamo C (2004) J Am Chem Soc 126:10763–10777CrossRefGoogle Scholar
  17. 17.
    Abbotto A, Sauvage F, Barolo C, De Angelis F, Fantacci S, Graetzel M, Manfredi N, Marinzi C, Nazeeruddin MK (2011) Dalton Trans 40:234–242CrossRefGoogle Scholar
  18. 18.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK, Gratzel M (2010) J Phys Chem C 114:6054–6061CrossRefGoogle Scholar
  19. 19.
    Lobello MG, Fantacci S, Credi A, De Angelis F (2011) Eur J Inorg Chem 10:1605–1613CrossRefGoogle Scholar
  20. 20.
    Nazeeruddin MK, Bessho T, Cevey L, Ito S, Klein C, De Angelis F, Fantacci S, Comte P, Liska P, Imai H, Graetzel M (2007) J Photochem Photobiol A Chemistry 185:331–337CrossRefGoogle Scholar
  21. 21.
    Tachibana Y, Moser JE, Grätzel M, Klug DR, Durrant JR (1996) J Phys Chem 100:20056–20062CrossRefGoogle Scholar
  22. 22.
    Brennaman MK, Alstrum-Acevedo JH, Fleming CN, Jang P, Meyer TJ, Papanikolas JM (2002) J Am Chem Soc 124:15094–15098CrossRefGoogle Scholar
  23. 23.
    Chiorboli C, Rodgers MAJ, Scandola F (2003) J Am Chem Soc 125:483–491CrossRefGoogle Scholar
  24. 24.
    Peltier C, Lainé PP, Scalmani G, Frisch MJ, Adamo C, Ciofini I (2009) J Mol Struct THEOCHEM 914:94–99CrossRefGoogle Scholar
  25. 25.
    Fortage J, Tuyèras F, Ochsenbein P, Puntoriero F, Nastasi F, Campagna S, Griveau S, Bedioui F, Ciofini I, Lainé PP (2010) Chem Eur J 16:11047–11063CrossRefGoogle Scholar
  26. 26.
    Peltier C, Adamo C, Lainé PP, Campagna S, Puntoriero F, Ciofini I (2010) J Phys Chem A 114:8434–8443CrossRefGoogle Scholar
  27. 27.
    Fortage J, Peltier C, Nastasi F, Puntoriero F, Tuyèras F, Griveau S, Bedioui F, Adamo C, Ciofini I, Campagna S, Lainé PP (2010) J Am Chem Soc 132:16700–16713CrossRefGoogle Scholar
  28. 28.
    Vlček A, Záliš S (2007) Coord Chem Rev 251:258–267CrossRefGoogle Scholar
  29. 29.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2009) Acc Chem Res 42:326–334CrossRefGoogle Scholar
  30. 30.
    Dreuw A, Head-Gordon M (2004) J Am Chem Soc 126:4007–4016CrossRefGoogle Scholar
  31. 31.
    Le Bahers T, Adamo C, Ciofini I (2011) JCTC 7:2498–2506Google Scholar
  32. 32.
    Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118CrossRefGoogle Scholar
  33. 33.
    Frisch MJ et al (2010) Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CTGoogle Scholar
  34. 34.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  35. 35.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094CrossRefGoogle Scholar
  36. 36.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  37. 37.
    Lainé P, Bedioui F, Ochsenbein P, Marvaud V, Bonin M, Amouyal E (2002) J Am Chem Soc 124:1364–1377CrossRefGoogle Scholar
  38. 38.
    Lainé P, Bedioui F, Amouyal E, Albin V, Berruyer-Penaud F (2002) Chem Eur J 8:3162–3176CrossRefGoogle Scholar
  39. 39.
    Lainé P, Amouyal E (1999) Chem Commun 935–936Google Scholar
  40. 40.
    Le Bahers T, Labat F, Pauporté T, Lainé PP, Ciofini I (2011) J Am Chem Soc 133:8005–8013CrossRefGoogle Scholar
  41. 41.
    Wu D, Pisula W, Enkelmann V, Feng X, Müllen K (2009) J Am Chem Soc 131:9620–9621CrossRefGoogle Scholar
  42. 42.
    Wu D, Zhi L, Bodwell GJ, Cui G, Tsao N, Müllen K (2007) Angew Chem Int Ed 46:5417–5420CrossRefGoogle Scholar
  43. 43.
    Katritzky AR, Zakaria Z, Lunt E, Jones PG, Kennard O (1979) J Chem Soc Chem Commun 268–269Google Scholar
  44. 44.
    Katritzky AR, Zakaria Z, Lunt E (1980) J Chem Soc Perkin Trans 1:1879–1887CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Samira Zeroual
    • 1
    • 2
  • Nathalie Bouet
    • 1
  • Fabien Tuyèras
    • 3
  • Cyril Peltier
    • 1
  • Nadia Ouddai
    • 2
  • Philippe Ochsenbein
    • 4
  • Carlo Adamo
    • 1
  • Philippe P. Lainé
    • 3
    Email author
  • Ilaria Ciofini
    • 1
    Email author
  1. 1.LECIME, Laboratoire d’Électrochimie, Chimie des Interfaces et Modélisation pour l’ÉnergieUMR 7575 CNRSParis Cedex 05France
  2. 2.Laboratoire de chimie de materiaux et des vivants: Activité, RéactivitéUniversité de BatnaBatnaAlgeria
  3. 3.Laboratoire ITODYS, UMR 7086 CNRSUniversité Paris DiderotParis Cedex 13France
  4. 4.Laboratoire de Cristallographie et Modélisation Moléculaire du SolideSanofi-Aventis LGCRMontpellier Cedex 04France

Personalised recommendations