Advertisement

Theoretical Chemistry Accounts

, 131:1105 | Cite as

Examining the impact of ancillary ligand basicity on copper(I)–ethylene binding interactions: a DFT study

  • Naomi C. Pernicone
  • Jacob B. Geri
  • John T. YorkEmail author
Regular Article

Abstract

A theoretical investigation at the density functional theory level (B3LYP) has been conducted to elucidate the impact of ligand basicity on the binding interactions between ethylene and copper(I) ions in [Cu(η 2-C2H4)]+ and a series of [Cu(L)(η 2-C2H4)]+ complexes, where L = substituted 1,10-phenanthroline ligands. Molecular orbital analysis shows that binding in [Cu(η 2-C2H4)]+ primarily involves interaction between the filled ethylene π-bonding orbital and the empty Cu(4s) and Cu(4p) orbitals, with less interaction observed between the low energy Cu(3d) orbitals and the empty ethylene π*-orbital. The presence of electron-donating ligands in the [Cu(L)(η 2-C2H4)]+ complexes destabilizes the predominantly Cu(3d)-character filled frontier orbital of the [Cu(L)]+ fragment, promoting better overlap with the vacant ethylene π*-orbital and increasing Cu → ethylene π-backbonding. Moreover, the energy of the filled [Cu(L)]+ frontier orbital and mixing with the ethylene π*-orbital increase with increasing pK a of the 1,10-phenanthroline ligand. Natural bond orbital analysis reveals an increase in Cu → ethylene electron donation with addition of ligands to [Cu(η 2-C2H4)]+ and an increase in backbonding with increasing ligand pK a in the [Cu(L)(η 2-C2H4)]+ complexes. Energy decomposition analysis (ALMO-EDA) calculations show that, while Cu → ethylene charge transfer (CT) increases with more basic ligands, ethylene → Cu CT and non-CT frozen density and polarization effects become less favorable, yielding little change in copper(I)–ethylene binding energy with ligand pK a. ALMO-EDA calculations on related [Cu(L)(NCCH3)]+ complexes and calculated free energy changes for the displacement of acetonitrile by ethylene reveal a direct correlation between increasing ligand pK a and the favorability of ethylene binding, consistent with experimental observations.

Keywords

Density functional theory Copper Ethylene Organometallic 

Notes

Acknowledgments

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (Grant 42303-GB3) and to Stetson University for financial support of this research.

Supplementary material

214_2012_1105_MOESM1_ESM.doc (5.1 mb)
Supporting Information Atomic coordinates for all optimized geometries are available. Supplementary material 1 (DOC 5,243 kb)

References

  1. 1.
    Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) Science 283:996CrossRefGoogle Scholar
  2. 2.
    Pirrung MC, Bleecker AB, Inoue Y, Rodriguez FI, Sugaware N, Wada T, Zou Y, Binder BM (2008) Chem Biol 15:313CrossRefGoogle Scholar
  3. 3.
    Straub BF, Gruber I, Rominger F, Hofmann P (2003) J Organomet Chem 684:124CrossRefGoogle Scholar
  4. 4.
    Brandt P, Sodergren MJ, Andersson PG, Norrby P-O (2000) J Am Chem Soc 122:8013CrossRefGoogle Scholar
  5. 5.
    Wang X-S, Zhao H, Li Y-H, Xiong R-G, You X-Z (2005) Top Catal 35:43CrossRefGoogle Scholar
  6. 6.
    Green O, Bhavesh AG, Burstyn JN (2009) Inorg Chem 48:5704CrossRefGoogle Scholar
  7. 7.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1558CrossRefGoogle Scholar
  8. 8.
    Hertwig RH, Koch W, Schroder D, Schwarz H, Hrusak J, Schwerdtfeger P (1996) J Phys Chem 100:12253CrossRefGoogle Scholar
  9. 9.
    Bohme M, Wagener T, Frenking G (1996) J Organomet Chem 520:31CrossRefGoogle Scholar
  10. 10.
    Nechaev MS, Rayon VM, Frenking G (2004) J Phys Chem A 108:3134CrossRefGoogle Scholar
  11. 11.
    Allen JJ, Barron AR (2009) Dalton Trans 878Google Scholar
  12. 12.
    Mingos DMP (2001) J Organomet Chem 635:1CrossRefGoogle Scholar
  13. 13.
    Dias HVR, Wu J (2008) Eur J Inorg Chem 509Google Scholar
  14. 14.
    Hirsch J, DeBeer George S, Solomon EI, Hedman B, Hodgson KO, Burstyn JN (2001) Inorg Chem 40:2439CrossRefGoogle Scholar
  15. 15.
    Suenaga Y, Wu LP, Kuroda-Sowa T, Munakata M, Maekawa M (1997) Polyhedron 16:67CrossRefGoogle Scholar
  16. 16.
    Munakata M, Kitagawa S, Kosome S, Asahara A (1986) Inorg Chem 25:2622CrossRefGoogle Scholar
  17. 17.
    Masuda H, Yamamoto N, Taga T, Machida K, Kitagawa S, Munakata MJ (1987) J Organomet Chem 322:121CrossRefGoogle Scholar
  18. 18.
    Thompson JS, Harlow RL, Whitney JF (1983) J Am Chem Soc 105:3522CrossRefGoogle Scholar
  19. 19.
    Dias HVR, Lu H-L, Kim H-J, Polach SA, Goh TKHH, Browning RG, Lovely CJ (2002) Organometallics 21:1466CrossRefGoogle Scholar
  20. 20.
    Dias HVR, Wang X, Diyabalanage HVK (2005) Inorg Chem 44:7322CrossRefGoogle Scholar
  21. 21.
    Dai X, Warren TW (2001) Chem Commun 1998Google Scholar
  22. 22.
    Straub BF, Eisentrager F, Hofmann P (1999) Chem Commun 2507Google Scholar
  23. 23.
    Gasque L, Medina G, Ruiz-Ramírez L, Moreno-Esparza R (1999) Inorg Chim Acta 288:106CrossRefGoogle Scholar
  24. 24.
    Laitar DS, Mathison JN, Davis WM, Sadighi JP (2003) Inorg Chem 42:7354CrossRefGoogle Scholar
  25. 25.
    Hill LRM, Gherman BF, Aboelella NW, Cramer CJ, Tolman WB (2006) Dalton Trans 4944Google Scholar
  26. 26.
    Srebro M, Mitoraj M (2009) Organometallics 28:3650CrossRefGoogle Scholar
  27. 27.
    Thompson JS, Bradley AZ, Park K-H, Dobbs KD, Marshall W (2006) Organometallics 25:2712CrossRefGoogle Scholar
  28. 28.
    Oguadinma PO, Schaper F (2009) Organometallics 28:6721CrossRefGoogle Scholar
  29. 29.
    Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187CrossRefGoogle Scholar
  30. 30.
    Gorelsky SI (1997) AOMix: program for molecular orbital analysis. York University, TorontoGoogle Scholar
  31. 31.
    Reed AE, Weinhold FJ (1985) Chem Phys 83:1736Google Scholar
  32. 32.
    Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon MJ (2007) Phys Chem A 111:8753CrossRefGoogle Scholar
  33. 33.
    Shao Y, Fusti-Molnar L, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio RA Jr, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PA, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Daschel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu S-P, Kedziora G, Khaliullin RZ, Klunzinger P, Lee AM, Lee MS, Liang WZ, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock III HL, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer III HF, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8:317Google Scholar
  34. 34.
    Becke AD (1998) Phys Rev A 38:3098CrossRefGoogle Scholar
  35. 35.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  36. 36.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M., Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03; Revision E.01. Gaussian, Inc., WallingfordGoogle Scholar
  38. 38.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866CrossRefGoogle Scholar
  39. 39.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257CrossRefGoogle Scholar
  40. 40.
    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, Defrees DJ, Pople JA (1982) J Chem Phys 77:3654CrossRefGoogle Scholar
  41. 41.
    Heppner DE, Gherman BF, Tolman WB, Cramer CJ (2006) Dalton Trans 4773Google Scholar
  42. 42.
    Dai X, Warren TH (2004) J Am Chem Soc 126:10085CrossRefGoogle Scholar
  43. 43.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  44. 44.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  45. 45.
    Scott AP, Radom L (1996) J Phys Chem 100:16502CrossRefGoogle Scholar
  46. 46.
    Bartell LS, Roth CD, Hollowell KK, Young JE Jr (1965) J Chem Phys 42:2683CrossRefGoogle Scholar
  47. 47.
    Cheng P-T, Cook CD, Nyburg SC, Wan KY (1971) Inorg Chem 10:2210CrossRefGoogle Scholar
  48. 48.
    Cheng P-T, Nuburg SC (1972) Can J Chem 50:912CrossRefGoogle Scholar
  49. 49.
    Dreissig W, Dietrich H (1981) Acta Cryst B37:931Google Scholar
  50. 50.
    Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187CrossRefGoogle Scholar
  51. 51.
    Rusanova J, Rusanov E, Gorelsky SI, Christendat D, Popescu R, Farah AA, Beaulac R, Reber C, Lever ABP (2006) Inorg Chem 45:6246CrossRefGoogle Scholar
  52. 52.
    Cedeno DL, Sniatynsky R (2005) Organometallics 24:3882CrossRefGoogle Scholar
  53. 53.
    Schlappi DN, Cedeno DL (2003) J Phys Chem A 107:8763CrossRefGoogle Scholar
  54. 54.
    Ikeda A, Nakao Y, Sato H, Sakaki S (2007) J Phys Chem A 111:712CrossRefGoogle Scholar
  55. 55.
    Uddin J, Dapprich S, Frenking G, Yates BF (1998) Organometallics 18:457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Naomi C. Pernicone
    • 1
  • Jacob B. Geri
    • 1
  • John T. York
    • 1
    Email author
  1. 1.Department of ChemistryStetson UniversityDeLandUSA

Personalised recommendations