Theoretical Chemistry Accounts

, 131:1103 | Cite as

Theoretical study on reaction mechanism of sulfuric acid and ammonia and hydration of (NH4)2SO4

  • Wei-Wei Liu
  • Xiao-Lin Wang
  • Shi-Lu Chen
  • Yun-Hong ZhangEmail author
  • Ze-Sheng LiEmail author
Regular Article


In order to understand the mechanism of nucleation of (NH4)2SO4 aerosol, the reaction between sulfuric acid and ammonia in the absence of water molecule is performed at M06/6-311++G(d,p) level. The results show that the (NH4)2SO4 and NH4HSO4 units may exist instantaneously in gas phase without water molecule, which is a theoretical prediction that needs detection by further experiment. To further study the growth of the primary nuclei, the geometries, energies, and harmonic frequencies of (NH4)2SO4 · (H2O) n (n = 0–9) are calculated both at M06/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. The tendency of the theoretical vibration frequencies is in accordance with the experimental results. The influence of the water molecule on the properties of (NH4)2SO4 is also analyzed. Our results indicate that M06 is more accurate than B3LYP for this kind of system. Moreover, the first principle molecular dynamics method is used to simulate the structural transformation for two representative isomers whose energies are close, to understand the relationship between solvent-shared ion pairs and contact ion pairs.


(NH4)2SO4 DFT Molecular dynamics Mechanism Hydration 



This work is supported by the Major State Basic Research Development Programs (2011CBA00701), the National Natural Science Foundation of China (20933001, 20873006, 20904007, and 21103010), the 111 Project B07012, the Excellent Young Scholars Research Fund of Beijing Institute of Technology (2010Y1214), and the Basic Research Fund of Beijing Institute of Technology (20101742032). We thank Dr. Sven de Marothy (Stockholm University) for providing graphical program used to make Figs. 2, 3, 4, and 6b in this paper.


  1. 1.
    Coakley JAJ, Cess RD, Yurevich FB (1983) J Atmos Sci 40:116–138CrossRefGoogle Scholar
  2. 2.
    Charlson RJ, Langner J, Andreae MO, Warren SG (1991) Tellus 43:152–163Google Scholar
  3. 3.
    Pincus R, Baker MB (1994) Nature 372:250CrossRefGoogle Scholar
  4. 4.
    See the special issue of Faraday Discuss (1996) 103Google Scholar
  5. 5.
    Meot-Ner M (1984) J Am Chem Soc 106:1265CrossRefGoogle Scholar
  6. 6.
    Lisy JM (1997) Int Rev Phys Chem 16:267CrossRefGoogle Scholar
  7. 7.
    Wang YS, Jiang JC, Cheng CL, Lin SH, Lee YT, Chang HC (1997) J Chem Phys 107:9695CrossRefGoogle Scholar
  8. 8.
    Wang YS, Chang HC, Jiang JC, Lin SH, Lee YT (1998) J Am Chem Soc 102:8777CrossRefGoogle Scholar
  9. 9.
    Fox BS, Beyer MK, Bondbey VE (2001) J Phys Chem A 105:6386CrossRefGoogle Scholar
  10. 10.
    Diken EG, Hammer NI, Johnson MA, Christie RA, Jordan KD (2005) J Chem Phys 123:164309CrossRefGoogle Scholar
  11. 11.
    Azeim SA, Van der Rest G (2005) J Phys Chem A 109:2505CrossRefGoogle Scholar
  12. 12.
    Pankewitz T, Lagutschenkov A, Niedner-Schatteburg G, Xantheas SS, Lee YT (2007) J Chem Phys 126:074307CrossRefGoogle Scholar
  13. 13.
    Bagno A, Conte V, Furia FD, Moro S (1997) J Phys Chem A 101:4637CrossRefGoogle Scholar
  14. 14.
    Douady J, Calvo F, Spiegelman F (2008) J Chem Phys 129:154305CrossRefGoogle Scholar
  15. 15.
    Wang YS, Chang HC, Jiang JC, Lin SH, Lee YT (1998) J Am Chem Soc 120:8777CrossRefGoogle Scholar
  16. 16.
    Khan A (2001) Chem Phys Lett 338:201CrossRefGoogle Scholar
  17. 17.
    Bruge F, Bernasconi M, Parrinello M (1999) J Chem Phys 110:4734CrossRefGoogle Scholar
  18. 18.
    Pickard FC, Dunn ME, Shields GC (2005) J Phys Chem A 109:4905CrossRefGoogle Scholar
  19. 19.
    Lee HM, Tarakeshwar P, Park J, Kolaski MR, Yoon YJ, Yi H, Kim WY, Kim KS (2004) J Phys Chem A 108:2949CrossRefGoogle Scholar
  20. 20.
    Karthikeyan S, Singh JN, Park M, Kumar R, Kim KS (2008) J Chem Phys 128:44304CrossRefGoogle Scholar
  21. 21.
    Contador JC, Aguilar MA, Olivares del Valle F (1997) J Chem Phys 214:113Google Scholar
  22. 22.
    Bueker HH, Uggered E (1995) J Phys Chem 99:5945CrossRefGoogle Scholar
  23. 23.
    Glendening ED, Feller D (1995) J Phys Chem 99:3060CrossRefGoogle Scholar
  24. 24.
    Magnusson E (1994) J Phys Chem 98:12558CrossRefGoogle Scholar
  25. 25.
    Kim J, Lee S, Cho SJ, Mhin BJ, Kim KS (1995) J Chem Phys 102:839CrossRefGoogle Scholar
  26. 26.
    Bauschlicher CW, Langhoff SR, Partridge H, Rice JE, Komornicki A (1991) J Chem Phys 95:5142CrossRefGoogle Scholar
  27. 27.
    Feller D, Glendening ED, Kendall RA, Peterson KA (1994) J Chem Phys 100:4981CrossRefGoogle Scholar
  28. 28.
    Xie Y, Remington RB, Schaefer HF (1994) J Chem Phys 101:4878CrossRefGoogle Scholar
  29. 29.
    Bagno A, Conte V, Furia FD, Moro S (1997) J Phys Chem A 101:4637CrossRefGoogle Scholar
  30. 30.
    Jiang JC, Chang HC, Lee YT, Lin SH (1999) J Phys Chem A 103:3123CrossRefGoogle Scholar
  31. 31.
    Larson LJ, Largent A, Tao FM (1999) J Phys Chem A 103:6786CrossRefGoogle Scholar
  32. 32.
    Anderson KE, Siepmann JI, McMurry PH, VandeVondele J (2008) J Am Chem Soc 130:14144CrossRefGoogle Scholar
  33. 33.
    Zhao YY, Zeng EY, Zhang XH, Ma L, Tao FM (2010) Chin J Struct Chem 29:525–534Google Scholar
  34. 34.
    Zhao J, Khalizov AF, Zhang R, McGraw R (2009) J Phys Chem 113:680–689CrossRefGoogle Scholar
  35. 35.
    Kurten T, Torpo L, Sundberg MR, Kerminen VM, Vehkamaki H, Kulmala M (2007) Atmos Chem Phys 7:2765–2773CrossRefGoogle Scholar
  36. 36.
    Zhang R, Suh I, Zhao J, Zhang D, Fortner EC, Tie X, Molina LT, Molina MJ (2004) Science 304:1487–1490CrossRefGoogle Scholar
  37. 37.
    Nadykto AB, Yu FQ (2007) Chem Phys Lett 435:14CrossRefGoogle Scholar
  38. 38.
    Zhang R, Wang L, Khalizov AF, Zhao J, Zheng J, McGraw RL, Molina LT (2009) Proc Natl Acad Sci 106:17650–17654CrossRefGoogle Scholar
  39. 39.
    Nadykto AB, Yu F (2007) Chem Phys Lett 435:14–18CrossRefGoogle Scholar
  40. 40.
    Kurten T, Torpo L, Ding CG, Vehkamaki H, Sundberg MR, Laasonen K, Kulmala M (2007) J Geophys Res 112:D04210CrossRefGoogle Scholar
  41. 41.
    Nadykto AB, Natsheh AA, Yu F, Mikkelsen KV (2008) Adv Quantum Chem 55:449–478CrossRefGoogle Scholar
  42. 42.
    Kurten T, Vehkamaki H (2008) Adv Quantum Chem 55:407–427CrossRefGoogle Scholar
  43. 43.
    Friend JP, Feeley HW, Krey PW, Spar J, Walton A (1961) The high altitude sampling program, Vol 5 Supplementary HASP studies, vol 5. Defense Atomic Support Agency, Washington, DCGoogle Scholar
  44. 44.
    Wang XB, Nicholas JB, Wang LS (2000) J Chem Phys 113:10837CrossRefGoogle Scholar
  45. 45.
    Dong JL, Li XH, Zhao LJ, Xiao HS, Wang F, Guo X, Zhang YH (2007) J Phys Chem B 111:12170–12176CrossRefGoogle Scholar
  46. 46.
    Frisch MJ, Trucks GW et al (2009) Gaussian 09 revision a.l. Gaussian Inc, WallingfordGoogle Scholar
  47. 47.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  48. 48.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  49. 49.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  50. 50.
    Delley B (2000) J Chem Phys 113:7756–7764CrossRefGoogle Scholar
  51. 51.
    Delley B (1990) J Chem Phys 92:508–517CrossRefGoogle Scholar
  52. 52.
    Novoa JJ, Sosa C (1995) J Phys Chem 99:15837CrossRefGoogle Scholar
  53. 53.
    Dahlke EE, Orthmeyer MA, Truhlar DG (2008) J Phys Chem B 112:2372–2381CrossRefGoogle Scholar
  54. 54.
    Bryantsev VS, Diallo MS, Van duin ACT, Goddard WA (2009) J Chem Theory Comput 5:1016–1026CrossRefGoogle Scholar
  55. 55.
    Larson LJ, Largent A, Tao FM (1999) J Phys Chem A 103:6786–6792CrossRefGoogle Scholar
  56. 56.
    Rablen PR, Lockman JW, Jorgensen WL (1998) J Phys Chem A 102:3782CrossRefGoogle Scholar
  57. 57.
    Zhang YH, Chan CK (2003) J Phys Chem A 107:5956–5962CrossRefGoogle Scholar
  58. 58.
    Ohtaki H (2001) Monatshefte für Chemie 132:1237–1268Google Scholar
  59. 59.
    Zhang H, Zhang YH, Wang F (2009) J Comput Chem 30:493–503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, The Institute for Chemical PhysicsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Academy of Fundamental and Interdisciplinary ScienceHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations