Electron correlation methods based on the random phase approximation

Abstract

In the past decade, the random phase approximation (RPA) has emerged as a promising post-Kohn–Sham method to treat electron correlation in molecules, surfaces, and solids. In this review, we explain how RPA arises naturally as a zero-order approximation from the adiabatic connection and the fluctuation-dissipation theorem in a density functional context. This is contrasted to RPA with exchange (RPAX) in a post-Hartree–Fock context. In both methods, RPA and RPAX, the correlation energy may be expressed as a sum over zero-point energies of harmonic oscillators representing collective electronic excitations, consistent with the physical picture originally proposed by Bohm and Pines. The extra factor 1/2 in the RPAX case is rigorously derived. Approaches beyond RPA are briefly summarized. We also review computational strategies implementing RPA. The combination of auxiliary expansions and imaginary frequency integration methods has lead to recent progress in this field, making RPA calculations affordable for systems with over 100 atoms. Finally, we summarize benchmark applications of RPA to various molecular and solid-state properties, including relative energies of conformers, reaction energies involving weak and covalent interactions, diatomic potential energy curves, ionization potentials and electron affinities, surface adsorption energies, bulk cohesive energies and lattice constants. RPA barrier heights for an extended benchmark set are presented. RPA is an order of magnitude more accurate than semi-local functionals such as B3LYP for non-covalent interactions rivaling the best empirically parametrized methods. Larger but systematic errors are observed for processes that do not conserve the number of electron pairs, such as atomization and ionization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Bohm D, Pines D (1951) Phys Rev 82:625

    CAS  Google Scholar 

  2. 2.

    Pines D, Bohm D (1952) Phys Rev 85:338

    CAS  Google Scholar 

  3. 3.

    Bohm D, Pines D (1953) Phys Rev 92:609

    CAS  Google Scholar 

  4. 4.

    Gell-Mann M, Brueckner KA (1957) Phys Rev 106:364

    CAS  Google Scholar 

  5. 5.

    McLachlan AD, Ball MA (1964) Rev Mod Phys 36:844

    CAS  Google Scholar 

  6. 6.

    Oddershede J (1978) Adv Quant Chem 11:275

    CAS  Google Scholar 

  7. 7.

    Szabo A, Ostlund NS (1977) J Chem Phys 67:4351

    CAS  Google Scholar 

  8. 8.

    Shibuya T-I, McKoy V (1970) Phys Rev A 2:2208

    Google Scholar 

  9. 9.

    Ostlund N, Karplus M (1971) Chem Phys Lett 11:450

    CAS  Google Scholar 

  10. 10.

    Öhrn Y, Linderberg J (1979) Int J Quant Chem 15:343

    Google Scholar 

  11. 11.

    Langreth DC, Perdew JP (1975) Solid State Commun 17:1425

    Google Scholar 

  12. 12.

    Langreth DC, Perdew JP (1977) Phys Rev B 15:2884

    Google Scholar 

  13. 13.

    Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274

    CAS  Google Scholar 

  14. 14.

    Callen HB, Welton TA (1951) Phys Rev 83:34

    Google Scholar 

  15. 15.

    Andersson Y, Langreth DC, Lundqvist BI (1996) Phys Rev Lett 76:102

    Google Scholar 

  16. 16.

    Dobson JF, Wang J (1999) Phys Rev Lett 82:2123

    CAS  Google Scholar 

  17. 17.

    Dobson J (2006) In: Time-dependent density functional theory, vol. 706. Springer, Berlin, p 443

  18. 18.

    Furche F (2001) Phys Rev B 64:195120

    Google Scholar 

  19. 19.

    Levy M (1979) Proc Natl Acad Sci USA 76:6062

    CAS  Google Scholar 

  20. 20.

    Fetter AL, Walecka JD (1971) Quantum theory of many-particle systems, international series in pure and applied physics. MacGraw-Hill, New York

    Google Scholar 

  21. 21.

    Runge E, Gross EKU (1984) Phys Rev Lett 52:997

    CAS  Google Scholar 

  22. 22.

    Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212

    CAS  Google Scholar 

  23. 23.

    Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods, vol. 1 of Recent advances in computational chemistry. World Scientific, Singapore, p 155

  24. 24.

    Furche F (2001) J Chem Phys 114:5982

    CAS  Google Scholar 

  25. 25.

    Furche F (2008) J Chem Phys 129:114105

    Google Scholar 

  26. 26.

    Hedin L (1965) Phys Rev 139:A796

    Google Scholar 

  27. 27.

    Toulouse J, Zhu W, Ángyán JG, Savin A (2010) Phys Rev A 82:032502

    Google Scholar 

  28. 28.

    Hellgren M, von Barth U (2007) Phys Rev B 76:075107

    Google Scholar 

  29. 29.

    Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74:601

    CAS  Google Scholar 

  30. 30.

    Bechstedt F, Fuchs F, Kresse G (2009) Phys Status Solidi (B) 246:1877

    CAS  Google Scholar 

  31. 31.

    Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  32. 32.

    Ball MA, McLachlan AD (1964) Mol Phys 7:501

    CAS  Google Scholar 

  33. 33.

    Toulouse J, Gerber IC, Jansen G, Savin A, Ángyán JG (2009) Phys Rev Lett 102:096404

    Google Scholar 

  34. 34.

    Furche T, Van Voorhis T (2005) Chem Phys 122:164106

    Google Scholar 

  35. 35.

    Klopper W, Teale AM, Coriani S, Pedersen TB, Helgaker T (2011) Chem Phys Lett 510:147

    CAS  Google Scholar 

  36. 36.

    Jansen G, Liu RF, Ángyán JG (2010) J Chem Phys 133:154106

    Google Scholar 

  37. 37.

    Heßelmann A (2011) J Chem Phys 134:204107

    Google Scholar 

  38. 38.

    Freeman DL (1977) Phys Rev B 15:5512

    Google Scholar 

  39. 39.

    Scuseria GE, Henderson TM, Sorensen DC (2008) J Chem Phys 129:231101

    Google Scholar 

  40. 40.

    Hansen AE, Bouman TD (1979) Mol Phys 37:1713

    CAS  Google Scholar 

  41. 41.

    Sanderson EA (1965) Phys Lett 19:141

    CAS  Google Scholar 

  42. 42.

    Burke K, Perdew JP, Langreth DC (1994) Phys Rev Lett 73:1283

    CAS  Google Scholar 

  43. 43.

    Yan Z, Perdew JP, Kurth S (2000) Phys Rev B 61:16430

    CAS  Google Scholar 

  44. 44.

    Ruzsinszky A, Perdew JP, Csonka GI (2010) J Chem Theory Comput 6:127

    Google Scholar 

  45. 45.

    Ruzsinszky A, Perdew JP, Csonka GI (2011) J Chem Phys 134:114110

    Google Scholar 

  46. 46.

    Janesko BG, Henderson TM, Scuseria GE (2009) J Chem Phys 130:081105

    Google Scholar 

  47. 47.

    Zhu W, Toulouse J, Savin A, Ángyán JG (2010) J Chem Phys 132:244108

    Google Scholar 

  48. 48.

    Görling A, Levy M (1993) Phys Rev B 47:13105

    Google Scholar 

  49. 49.

    Ernzerhof M (1996) Chem Phys Lett 263:499

    CAS  Google Scholar 

  50. 50.

    Grüneis A, Marsman M, Harl J, Schimka L, Kresse G (2009) J Chem Phys 131:154115

    Google Scholar 

  51. 51.

    Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G (2010) J Chem Phys 132:094103

    Google Scholar 

  52. 52.

    Paier J, Janesko BG, Henderson TM, Scuseria GE, Grüneis A, Kresse G (2010) J Chem Phys 133:179902

    Google Scholar 

  53. 53.

    Henderson TM, Scuseria GE (2010) Mol Phys 108:2511

    CAS  Google Scholar 

  54. 54.

    Ren XG, Tkatchenko A, Rinke P, Scheffler M (2011) Phys Rev Lett 106:153003

    Google Scholar 

  55. 55.

    Singwi KS, Tosi MP, Land RH, Sjölander A (1968) Phys Rev 176:589

    CAS  Google Scholar 

  56. 56.

    Gross EKU, Kohn W (1990) Adv Quant Chem 21:255

    CAS  Google Scholar 

  57. 57.

    Dobson JF, Wang J (2000) Phys Rev B 62:10038

    CAS  Google Scholar 

  58. 58.

    Lein M, Gross EKU, Perdew JP (2000) Phys Rev B 61:13431

    CAS  Google Scholar 

  59. 59.

    Dobson JF, Wang J, Gould T (2002) Phys Rev B 66:081108

    Google Scholar 

  60. 60.

    Dobson JF (2009) Phys Chem Chem Phys 11:4528

    CAS  Google Scholar 

  61. 61.

    Constantin LA, Pitarke JM, Dobson JF, Garcia-Lekue A, Perdew JP (2008) Phys Rev Lett 100:036401

    Google Scholar 

  62. 62.

    Kotani T, Akai H (1998) J Magn Magn Mater 177(181):569

    Google Scholar 

  63. 63.

    Hellgren M, von Barth U (2008) Phys Rev B 78:115107

    Google Scholar 

  64. 64.

    Hirata S, Ivanov S, Grabowski I, Bartlett RJ (2002) J Chem Phys 116:6468

    CAS  Google Scholar 

  65. 65.

    Shigeta Y, Hirao K, Hirata S (2006) Phys Rev A 73:010502

    Google Scholar 

  66. 66.

    Heßelmann A, Ipatov A, Görling A (2009) Phys Rev A 80:012507

    Google Scholar 

  67. 67.

    Heßelmann A, Görling A (2010) Mol Phys 108:359

    Google Scholar 

  68. 68.

    Beebe N, Linderberg J (1977) Int J Quant Chem 12:683

    CAS  Google Scholar 

  69. 69.

    Friesner RA (1991) Ann Rev Phys Chem 42:341

    CAS  Google Scholar 

  70. 70.

    Ko C, Malick DK, Braden DA, Friesner RA, Martínez TJ (2008) J Chem Phys 128:104103

    Google Scholar 

  71. 71.

    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    CAS  Google Scholar 

  72. 72.

    Dunlap BI, Connolly JWD, Sabin JRJ (1979) Chem Phys 71:3396

    CAS  Google Scholar 

  73. 73.

    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283

    CAS  Google Scholar 

  74. 74.

    Bauernschmitt R, Hser M, Treutler O, Ahlrichs R (1997) Chem Phys Lett 264:573

    CAS  Google Scholar 

  75. 75.

    Neese F, Olbrich G (2002) Chem Phys Lett 362:170

    CAS  Google Scholar 

  76. 76.

    Rappoport D, Furche F (2005) J Chem Phys 122:064105

    Google Scholar 

  77. 77.

    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    CAS  Google Scholar 

  78. 78.

    Weigend F, Häser M (1997) Theor Chim Acta 97:331

    CAS  Google Scholar 

  79. 79.

    Eshuis H, Yarkony J, Furche F (2010) J Chem Phys 132:234114

    Google Scholar 

  80. 80.

    Hale N, Higham NJ, Trefethen LN (2008) SIAM J Num Anal 46:2505

    Google Scholar 

  81. 81.

    Boyd JP (1987) J Sci Comput 2:99

    Google Scholar 

  82. 82.

    Dunning J (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  83. 83.

    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    CAS  Google Scholar 

  84. 84.

    Tajti A, Szalay PG, Császár AG, Kállay M, Gauss J, Valeev EF, Flowers BA, Vázquez J, Stanton JF (2004) J Chem Phys 121:11599

    CAS  Google Scholar 

  85. 85.

    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297

    CAS  Google Scholar 

  86. 86.

    Eshuis H, Furche F (2011) J Phys Chem Lett 2:983

    CAS  Google Scholar 

  87. 87.

    Harl J, Kresse G (2008) Phys Rev B 77:045136

    Google Scholar 

  88. 88.

    Fuchs M, Gonze X (2002) Phys Rev B 65:235109

    Google Scholar 

  89. 89.

    Niquet YM, Fuchs M, Gonze X (2003) Phys Rev A 68:032507

    Google Scholar 

  90. 90.

    Ren X, Rinke P, Scheffler M (2009) Phys Rev B 80:045402

    Google Scholar 

  91. 91.

    Bashford D, Chothia C, Lesk AM (1987) J Mol Biol 196:199

    CAS  Google Scholar 

  92. 92.

    Dabkowska I, Gonzalez HV, Jurecka P, Hobza P (2005) J Phys Chem A 109:1131

    CAS  Google Scholar 

  93. 93.

    Meyer EA, Castellano RK, Diederich F (2003) Angew Chem Int Ed 42:1210

    CAS  Google Scholar 

  94. 94.

    Grimme S (2006) J Chem Phys 124:034108

    Google Scholar 

  95. 95.

    Kemnitz CR, Mackey JL, Loewen MJ, Hargrove JL, Lewis JL, Hawkins WE, Nielsen AF (2010) Chem Eur J 16:6942

    CAS  Google Scholar 

  96. 96.

    Wodrich MD, Jana DF, von Rague Schleyer P, Corminboeuf C (2008) J Phys Chem A 112:11495

    CAS  Google Scholar 

  97. 97.

    Grimme S, Djukic J (2010) Inorg Chem 49:2911

    CAS  Google Scholar 

  98. 98.

    Sherrill CD (2009) In: Rev Comp Chem, Wiley, New York, pp 1–38

  99. 99.

    Černý J, Hobza P (2007) Phys Chem Chem Phys 9:5291

    Google Scholar 

  100. 100.

    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9:3397

    CAS  Google Scholar 

  101. 101.

    Grimme S (2004) J Comp Chem 25:1463

    CAS  Google Scholar 

  102. 102.

    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    CAS  Google Scholar 

  103. 103.

    Vydrov OA, Van Voorhis T (2010) Phys Rev A 81:062708

    Google Scholar 

  104. 104.

    Vydrov OA, Van Voorhis T (2009) J Chem Phys 130:104105

    Google Scholar 

  105. 105.

    Langreth D, Lundqvist B, Chakarova-Käck S, Cooper V, Dion M, Hyldgaard P, Kelkkanen A, Kleis J, Kong L, Li S et al (2009) J Phys Cond Matter 21:084203

    CAS  Google Scholar 

  106. 106.

    Axilrod BM, Teller E (1943) J Chem Phys 11:299

    CAS  Google Scholar 

  107. 107.

    Lu D, Nguyen H, Galli G (2010) J Chem Phys 133:154110

    Google Scholar 

  108. 108.

    Janesko BG, Scuseria GE (2009) J Chem Phys 131:154106

    Google Scholar 

  109. 109.

    Gruzman D, Karton A, Martin JML (2009) J Phys Chem A 113:11974

    CAS  Google Scholar 

  110. 110.

    Goerigk L, Grimme S (2011) Phys Chem Chem Phys 13:6670

    CAS  Google Scholar 

  111. 111.

    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157167

    Google Scholar 

  112. 112.

    Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1

    CAS  Google Scholar 

  113. 113.

    Grimme S (2005) J Phys Chem A 109:3067

    CAS  Google Scholar 

  114. 114.

    Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104

    Google Scholar 

  115. 115.

    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985

    CAS  Google Scholar 

  116. 116.

    Jiang H, Engel E (2007) J Chem Phys 127:184108

    Google Scholar 

  117. 117.

    Harl J, Schimka L, Kresse G (2010) Phys Rev B 81:115126

    Google Scholar 

  118. 118.

    Vougioukalakis GC, Grubbs RH (2010) Chem Rev 110:1746

    CAS  Google Scholar 

  119. 119.

    Sanford MS, Love JA, Grubbs RH (2001) J Am Chem Soc 123:6543

    CAS  Google Scholar 

  120. 120.

    Śliwa P, Handzlik J (2010) Chem Phys Lett 493:273

    Google Scholar 

  121. 121.

    Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:324

    CAS  Google Scholar 

  122. 122.

    Benitez D, Tkatchouk E, Goddard WA (2009) Organometallics 28:2643

    CAS  Google Scholar 

  123. 123.

    Fuchs M, Niquet Y-M, Gonze X, Burke K (2005) J Chem Phys 122:094116

    CAS  Google Scholar 

  124. 124.

    Huber KP, Herzberg G (1979) Constants of diatomic molecules, vol. IV of Molecular spectra and molecular structure. Van Nostrand Reinhold, New York

    Google Scholar 

  125. 125.

    Oglivie JF, Wang FYH (1992) J Mol Struct 273:277

    Google Scholar 

  126. 126.

    Adamo C, Ernzerhof M, Scuseria GE (2000) J Chem Phys 112:2643

    CAS  Google Scholar 

  127. 127.

    May K, Dapprich S, Furche F, Unterreiner BV, Ahlrichs R (2000) Phys Chem Chem Phys 2:5084

    CAS  Google Scholar 

  128. 128.

    Wheeler SE, Houk KN, vR Schleyer P, Allen WD (2009) J Am Chem Soc 131:2547

    CAS  Google Scholar 

  129. 129.

    Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107

    CAS  Google Scholar 

  130. 130.

    Lee D, Furche F, Burke K (2010) J Phys Chem Lett 1:2124

    CAS  Google Scholar 

  131. 131.

    Lebègue S, Harl J, Gould T, Ángyán JG, Kresse G, Dobson JF (2010) Phys Rev Lett 105:196401

    Google Scholar 

  132. 132.

    Dobson JF, White A, Rubio A (2006) Phys Rev Lett 96:073201

    Google Scholar 

  133. 133.

    Gould T, Simpkins K, Dobson JF (2008) Phys Rev B 77:165134

    Google Scholar 

  134. 134.

    Heßelmann A, Görling A (2011) Mol Phys 109:2473

  135. 135.

    Ángyán JG, Liu R-F, Toulouse J, Jansen G (2011) J Chem Theory Comput 7:3116

    Google Scholar 

  136. 136.

    Toulouse J, Zhu W, Savin A, Jansen G, Ángyán JG (2011) J Chem Phys 135:084119

    Google Scholar 

  137. 137.

    Toulouse J, Zhu W, Ángyán JG, Savin A (2010) Phys Rev A82:032502

  138. 138.

    Irelan RM, Henderson TM, Scuseria GE (2011) J Chem Phys 135:094105

    Google Scholar 

  139. 139.

    Lotrich V, Bartlett RJ (2011) J Chem Phys 134:184108

    Google Scholar 

  140. 140.

    Heßelmann A, Görling A (2011) Phys Rev Lett 106:093001

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Asjbörn Burow for helpful comments. Two of us (H.E. and JE.B.) thank TURBOMOLE GmbH for support. This work was supported by the National Science Foundation, grant No. CHE-0911266.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Filipp Furche.

Additional information

Published as part of the special collection of articles celebrating the 50th anniversary of Theoretical Chemistry Accounts/Theoretica Chimica Acta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 75.4 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eshuis, H., Bates, J.E. & Furche, F. Electron correlation methods based on the random phase approximation. Theor Chem Acc 131, 1084 (2012). https://doi.org/10.1007/s00214-011-1084-8

Download citation

Keywords

  • Electronic structure theory
  • Density functional theory
  • Random phase approximation
  • Resolution-of-the-identity (RI) approximation
  • Van-der-Waals forces
  • Thermochemistry