Skip to main content

Advertisement

Log in

Negative energy states in relativistic quantum chemistry

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The role of the negative energy states in relativistic quantum chemistry is shortly discussed. They must be included in a sum over states formula that arises for second-order properties. Relativistic calculations for the electric dipole polarizability and the diamagnetic susceptibility (with on-center and displaced gauge origins) for hydrogen-like ions are presented to illustrate the problem. Relativistic electron correlation calculations mostly use a configuration space Dirac-Coulomb operator together with the no-pair approximation, which excludes the negative energy states from the correlation treatment. Despite all efforts, no consistent theoretical description between this and a full QED treatment seems to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desclaux JP (1973) At Data Nucl Data Tables 12:311

    Article  CAS  Google Scholar 

  2. Pitzer KS (1979) Acc Chem Res 12:271

    Article  CAS  Google Scholar 

  3. Pyykko P, Desclaux JP (1979) Acc Chem Res 12:276

    Article  CAS  Google Scholar 

  4. Christiansen PA, Ermler WC, Pitzer KS (1985) Annu Rev Phys Chem 36:407

    Article  CAS  Google Scholar 

  5. Pyykko P (1988) Chem Rev 88:563

    Article  CAS  Google Scholar 

  6. Breit G, Brown GE (1948) Phys Rev 74:1278

    Article  CAS  Google Scholar 

  7. Kaneko S (1977) J Phys B At Mol Opt Phys 10:3347

    Article  CAS  Google Scholar 

  8. Kutzelnigg W (2003) Phys Rev A 67:032109

    Article  Google Scholar 

  9. Poszwa A, Rutkowski A (2007) Phys Rev A 75:033402

    Article  Google Scholar 

  10. Xiao Y, Sun Q, Liu W (2012) Fully relativistic theories and methods for NMR parameters, article in this volume

  11. Kutzelnigg W (1997) Chem Phys 225:203

    Article  CAS  Google Scholar 

  12. Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29

    Article  Google Scholar 

  13. Reiher M (2006) Theor Chem Acc 116:241

    Article  CAS  Google Scholar 

  14. Nakajima T, Hirao K (2011) Chem Rev. doi:10.1021/cr200040s

  15. Vanlenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Article  CAS  Google Scholar 

  16. Sadlej AJ, Snijders JG, van Lenthe E, Baerends EJ (1995) J Chem Phys 102:1758

    Article  CAS  Google Scholar 

  17. van Wüllen C, Michauk C (2005) J Chem Phys 123:204113

    Article  Google Scholar 

  18. Peng DL, Liu WJ, Xiao YL, Cheng L (2007) J Chem Phys 127:104106

    Article  Google Scholar 

  19. Liu WJ (2010) Mol Phys 108:1679

    Article  CAS  Google Scholar 

  20. Barysz M, Sadlej AJ, Snijders JG (1997) Int J Quantum Chem 65:225

    Article  CAS  Google Scholar 

  21. Barysz M, Sadlej AJ (2002) J Chem Phys 116:2696

    Article  CAS  Google Scholar 

  22. Kutzelnigg W, Liu WJ (2005) J Chem Phys 123:241102

    Article  Google Scholar 

  23. Kutzelnigg W, Liu WJ (2006) Mol Phys 104:2225

    Article  CAS  Google Scholar 

  24. Liu WJ, Peng DL (2006) J Chem Phys 125:044102

    Article  Google Scholar 

  25. Liu WJ, Kutzelnigg W (2007) J Chem Phys 126:114107

    Article  Google Scholar 

  26. Peng D, Reiher M (2012) Exact decoupling of the relativistic fock operator, article in this volume

  27. Brown GE, Ravenhall DG (1951) Proc Roy Soc A 208:552

    Article  CAS  Google Scholar 

  28. Sucher J (1980) Phys Rev A 22:348

    Article  CAS  Google Scholar 

  29. Sucher J (1984) Int J Quantum Chem 25:3

    Article  CAS  Google Scholar 

  30. Sucher J (1985) Phys Rev Lett 55:1033

    Article  CAS  Google Scholar 

  31. Kutzelnigg W (2011) Chem Phys. doi:10.1016/j.chemphys.2011.06.001

  32. Mittleman MH (1981) Phys Rev A 24:1167

    Article  CAS  Google Scholar 

  33. Sapirstein J, Cheng KT, Chen MH (1999) Phys Rev A 59:259

    Article  CAS  Google Scholar 

  34. Watanabe Y, Nakano H, Tatewaki H (2007) J Chem Phys 126:174105

    Article  Google Scholar 

  35. Brown GE (1987) Phys Scr 36:71

    Article  CAS  Google Scholar 

  36. Liu W (2012) Phys Chem Chem Phys 14:35

    Google Scholar 

  37. Visscher L (2002) In: Schwerdtfeger P (ed) Relativistic electronic structure theory: Part 1 fundamentals. Elsevier, Amsterdam, pp 291

  38. Fleig T (2011) Chem Phys. doi:10.1016/j.chemphys.2011.06.032

  39. Ottschofski E, Kutzelnigg W (1997) J Chem Phys 106:6634

    Article  CAS  Google Scholar 

  40. Halkier A, Helgaker T, Klopper W, Olsen J (2000) Chem Phys Lett 319:287

    Article  CAS  Google Scholar 

  41. Kutzelnigg W (2008) Int J Quantum Chem 108:2280

    Article  CAS  Google Scholar 

  42. Bischoff FA, Valeev EF, Klopper W, Janssen CL (2010) J Chem Phys 132:214104

    Article  Google Scholar 

  43. Kutzelnigg W (1989) In: Mukherjee D (ed) Aspects of many body effects in molecules and extended systems, (Lecture Notes in Chemistry, vol 50). Springer, Berlin, p 353

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph van Wüllen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wüllen, C. Negative energy states in relativistic quantum chemistry. Theor Chem Acc 131, 1082 (2012). https://doi.org/10.1007/s00214-011-1082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-011-1082-x

Keywords

Navigation