Skip to main content
Log in

Explicitly correlated wave functions: summary and perspective

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We summarize explicitly correlated electronic structure theory in perspective of future work in the field. Earlier stages of approaches with different Ansätze in physics and chemistry are described. We then discuss recent advances focusing on explicitly correlated wave functions using cusp conditions. Removal of Coulomb singularities in terms of the rational generator is brought out from the viewpoint of many-body perturbation theory. On the basis of decomposition schemes for many-electron integrals in R12 and F12 methods, we further discuss the possibility of increasing the accuracy of molecular numerical integration and massively parallel calculations of explicitly correlated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070–4077

    Google Scholar 

  2. Widmark P-O, Malmqvist P-Å, Roos BO (1990) Theor Chim Acta 77:291–306

    CAS  Google Scholar 

  3. Widmark P-O, Persson BJ, Roos BO (1991) Theor Chim Acta 79:419–432

    CAS  Google Scholar 

  4. Pou-Amerigo R, Merchan M, Nebot-Gil I, Widmark P-O, Roos BO (1995) Theor Chim Acta 92:149–181

    CAS  Google Scholar 

  5. Dunning TH Jr. (1989) J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  6. Kendall RA, Dunning TH Jr., Harrison RJ (1992) J Chem Phys 96:6796–6806

    CAS  Google Scholar 

  7. Woon DE, Dunning TH Jr. (1995) J Chem Phys 103:4572–4585

    CAS  Google Scholar 

  8. Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639

    CAS  Google Scholar 

  9. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252

    CAS  Google Scholar 

  10. Bak KL, Jørgensen P, Olsen J, Helgaker T, Klopper W (2000) J Chem Phys 112:9229–9242

    CAS  Google Scholar 

  11. Bak KL, Gauss J, Jørgensen P, Olsen J, Helgaker T, Stanton JF (2001) J Chem Phys 114:6548–6556

    CAS  Google Scholar 

  12. Kutzelnigg W (1985) Theor Chim Acta 68:445–469

    CAS  Google Scholar 

  13. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427–468

    CAS  Google Scholar 

  14. Helgaker T, Klopper W, Tew DP (2008) Mol Phys 106:2107–2143

    CAS  Google Scholar 

  15. Tew DP, Hättig C, Bachorz RA, Klopper W, (2010) In: Čársky P, Paldus J, Pittner J (eds), Recent progress in coupled cluster methods. Springer, Berlin pp 535–572

  16. Werner H-J, Adler TB, Knizia G, Manby FR (2010) In: Čársky P, Paldus J, Pittner J (eds), Recent progress in coupled cluster methods. Springer, Berlin, pp 573–620

  17. Szalewicz K (2010) Mol Phys 108:3091–3103

    CAS  Google Scholar 

  18. Ten-no S, Noga J. Wiley Interdisciplinary Reviews: Computational Molecular Science, in press

  19. Hylleraas EA (1929) Z Phys. 54:347–366

    CAS  Google Scholar 

  20. Hylleraas EA (1964) Adv Quantum Chem 1:1–33

    CAS  Google Scholar 

  21. Kinoshita T (1957) Phys Rev 105:1490–1502

    CAS  Google Scholar 

  22. James HM, Coolidge AS (1933) J Chem Phys 1:825

    CAS  Google Scholar 

  23. Kołos W, Wolniewicz L (1968) J Chem Phys 49:404

    Google Scholar 

  24. Kato T (1957) Commun Pure Appl Math 10:151–177

    Google Scholar 

  25. Pack RT, Brown WB (1966) J Chem Phys 45:556–559

    CAS  Google Scholar 

  26. Kutzelnigg W, Morgan W (1992) J Chem Phys 96:4484–4508

    CAS  Google Scholar 

  27. Moragan W, Kutzelnigg W (1992) J Phys Chem 97:2425–2434

    Google Scholar 

  28. Bartlett JH (1937) Phys Rev 51:661–669

    Google Scholar 

  29. Fock VA (1954) Izv Akad Nauk SSSR, Ser. Fiz 18:161

    Google Scholar 

  30. Fock VA (1958) D Kngl Norske Videnskab Selsk Forh 31:138

    Google Scholar 

  31. Frankowski K, Pekeris CL (1966) Phys Rev 146:46

    CAS  Google Scholar 

  32. Jastrow R (1955) Phys Rev 98:1479–1484

    Google Scholar 

  33. Umrigar CJ, Wilson KG, Wilkins JW (1988) Phys Rev Lett 60:1719–1722

    CAS  Google Scholar 

  34. Boys SF, Handy NC (1969) Proc R Soc A 310:43–61

    CAS  Google Scholar 

  35. Hirschfelder JO (1963) J Chem Phys 39:3145–3146

    CAS  Google Scholar 

  36. Nooijen M, Bartlett RJ (1998) J Chem Phys 109:8232–8240

    CAS  Google Scholar 

  37. Ten-no S (2000) Chem Phys Lett 330:169–174

    CAS  Google Scholar 

  38. Ten-no S (2000) Chem Phys Lett 330:175–179

    CAS  Google Scholar 

  39. Hino O, Tanimura Y, Ten-no S (2001) J Chem Phys 115:7865–7871

    CAS  Google Scholar 

  40. Hino O, Tanimura Y, Ten-no S (2002) Chem Phys Lett 353:317–323

    CAS  Google Scholar 

  41. Ten-no S, Hino O (2002) Int J Mol Sci 3:459–474

    CAS  Google Scholar 

  42. Umezawa N, Tsuneyuki S (2003) J Chem Phys 119:10015

    CAS  Google Scholar 

  43. Umezawa N, Tsuneyuki S (2004) J Chem Phys 121:7070

    CAS  Google Scholar 

  44. Luo HJ, Hackbusch W, Frad HJ (2010) Mol Phys 108:425

    CAS  Google Scholar 

  45. Boys SF (1960) Proc Roy Soc London Ser A 258:402

    Google Scholar 

  46. Singer K (1960) Proc Roy Soc London Ser A 258:412

    CAS  Google Scholar 

  47. Sinanoğlu O (1961) Phys Rev 122:493

    Google Scholar 

  48. Sinanoğlu O (1962) J Chem Phys 36:3198

    Google Scholar 

  49. Sinanoğlu O (1964) Adv Chem Phys 6:315

    Google Scholar 

  50. Lester WA, Krauss M (1965) J Chem Phys 41:1407

    Google Scholar 

  51. Lester WA, Krauss M (1965) J Chem Phys 42:2990

    Google Scholar 

  52. Pan K-C, King HF (1970) J Chem Phys 53:4397–4399

    CAS  Google Scholar 

  53. Szalewicz K, Jeziorski B, Monkhorst HJ, Zabolitsky JG (1983) J Chem Phys 78:1420

    CAS  Google Scholar 

  54. Szalewicz K, Jeziorski B, Monkhorst HJ, Zabolitsky JG (1983) J Chem Phys 79:5543

    CAS  Google Scholar 

  55. Jeziorski B, Monkhorst HJ, Szalewicz K, Zabolitzky JG (1984) J Chem Phys 81:368

    CAS  Google Scholar 

  56. Szalewicz K, Jeziorski B, Monkhorst HJ, Zabolitsky JG (1984) J Chem Phys 81:2723

    CAS  Google Scholar 

  57. Wenzel KB, Zabolitzky JG, Szalewicz K, Jeziorski B, Monkhorst HJ (1986) J Chem Phys 85:3964

    CAS  Google Scholar 

  58. Schwartz C (1962) Phys Rev 126:1015

    CAS  Google Scholar 

  59. Hill RN (1985) J Chem Phys 83:1173

    CAS  Google Scholar 

  60. Klopper W, Kutzelnigg W (1987) Chem Phys Lett 134:17–22

    CAS  Google Scholar 

  61. Kutzelnigg W, Klopper W (1991) J Chem Phys 94:1985–2001

    CAS  Google Scholar 

  62. Klopper W (1991) Chem Phys Lett 186:583–585

    CAS  Google Scholar 

  63. Noga J, Kutzelnigg W, Klopper W (1992) Chem Phys Lett 199:497–504

    CAS  Google Scholar 

  64. Noga J, Kutzelnigg W (1994) J Chem Phys 101:7738–7762

    CAS  Google Scholar 

  65. Noga J, Kutzelnigg W, Klopper W (1997) In: R. J. Bartlett (ed), Recent advances in computational chemistry, vol 3. World Scientific, Singapore, pp 1–48

  66. Noga J, Valiron P, Klopper W (2001) J Chem Phys 115:2022

    CAS  Google Scholar 

  67. Dahle P, Helgaker T, Jonsson D, Taylor PR (2007) Phys Chem Chem Phys 9:3112–3126

    CAS  Google Scholar 

  68. Persson BJ, Taylor PR (1996) J Chem Phys 105:5915–5926

    CAS  Google Scholar 

  69. Persson BJ, Taylor PR (1997) Theor Chem Acc 97:240–250

    CAS  Google Scholar 

  70. Ten-no S (2003) Lect Notes Comput Sci 2660:152–158

    Google Scholar 

  71. Ten-no S (2004) J Chem Phys 121:117–129

    CAS  Google Scholar 

  72. May AJ, Manby FR (2004) J Chem Phys 121:4479–4485

    CAS  Google Scholar 

  73. McMurchie LE, Davidson ER (1978) J Comput Phys 26:218–231

    CAS  Google Scholar 

  74. Obara S, Saika A (1986) J Chem Phys 84:3963–3974

    CAS  Google Scholar 

  75. Obara S, Saika A (1988) J Chem Phys 89:1540–1559

    CAS  Google Scholar 

  76. Head-Gordon M, Pople JA (1988) J Chem Phys 89:5777

    CAS  Google Scholar 

  77. Ahlrichs R (2006) Phys Chem Chem Phys 8:3072–3077

    CAS  Google Scholar 

  78. Samson CCM, Klopper W, Helgaker T (2002) Comput Phys Commun 149:1–10

    CAS  Google Scholar 

  79. Samson CCM (2004) Highly accurate treatment of dynamical electron correlation through R12 methods and extrapolation techniques (PhD thesis, University of Utrecht)

  80. Ten-no S (2004) Chem Phys Lett 398:56–61

    CAS  Google Scholar 

  81. Ten-no S (2007) J Chem Phys 126:014108

    Google Scholar 

  82. Dupuis M, Rys J, King HF (1976) J Chem Phys 65:111–116

    CAS  Google Scholar 

  83. Shiozaki T (2009) Chem Phys Lett 479:160–164

    CAS  Google Scholar 

  84. May AJ, Valeev E, Polly R, Manby FR (2005) Phys Chem Chem Phys 7:2710–2713

    CAS  Google Scholar 

  85. Tew DP, Klopper W (2005) J Chem Phys 123:074101

    Google Scholar 

  86. Valeev EF (2006) J Chem Phys 125:244106

    Google Scholar 

  87. Werner H-J, Adler TB, Manby FR (2007) J Chem Phys 126:164102

    Google Scholar 

  88. Noga J, Kedžuch S, Šimunek J, Ten-no S (2008) J Chem Phys 128:174103; Erratum: (2009) J Chem Phys 130:029901

    Google Scholar 

  89. Fliegl H, Hättig C, Klopper W (2006) J Chem Phys 124:044112

    Google Scholar 

  90. Tew DP, Klopper W, Neiss C, Hättig C (2007) Phys Chem Chem Phys 9:1921–1930

    CAS  Google Scholar 

  91. Valeev EF (2008) Phys Chem Chem Phys 10:106

    CAS  Google Scholar 

  92. Shiozaki T, Kamiya M, Hirata S, Valeev EF (2008) Phys Chem Chem Phys 10:3358

    CAS  Google Scholar 

  93. Shiozaki T, Kamiya M, Hirata S, Valeev EF (2008) J Chem Phys 129:071101

    Google Scholar 

  94. Köhn A, Richings GW, Tew DP (2008) J Chem Phys 129:201103

    Google Scholar 

  95. Shiozaki T, Kamiya M, Hirata S, Valeev EF (2009) J Chem Phys 130:054101

    Google Scholar 

  96. Werner H-J, Manby FR (2006) J Chem Phys 124:054114

    Google Scholar 

  97. Manby FR, Werner H-J, Adler TB, May AJ (2006) J Chem Phys 124:094103

    Google Scholar 

  98. Werner HJ (2008) J Chem Phys 129:101103

    Google Scholar 

  99. Adler TB, Werner H-J, Manby FR (2009) J Chem Phys 130:054106

    Google Scholar 

  100. Adler TB, Werner H-J (2009) J Chem Phys 130:241101

    Google Scholar 

  101. Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102

    Google Scholar 

  102. Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108

    Google Scholar 

  103. Yousaf KE, Peterson KA (2009) Chem Phys Lett 476:303

    CAS  Google Scholar 

  104. Brandow BH (1967) Rev Mod Phys 39:771

    CAS  Google Scholar 

  105. Lindgren I, Morrison M (1986) Atomic many-body theory, 2nd edn. Springer, Berlin

    Google Scholar 

  106. Tew DP, Klopper W, Hättig C (2008) Chem Phys Lett 452:326

    CAS  Google Scholar 

  107. Bokhan D, Ten-no S, Noga J (2008) Phys Chem Chem Phys 10:3320–3326

    CAS  Google Scholar 

  108. Torheyden M, Valeev EF (2008) Phys Chem Chem Phys 10:3410

    CAS  Google Scholar 

  109. Alder TB, Knizia G, Werner H-J (2007) J Chem Phys 127:221106

    Google Scholar 

  110. Bokhan D, Bernadotte S, Ten-no S (2009) Chem Phys Lett 469:214

    CAS  Google Scholar 

  111. Hättig C, Tew DP, Köhn A (2010) J Chem Phys 132:231102

    Google Scholar 

  112. Köhn A, Tew DP (2010) J Chem Phys 133:174117

    Google Scholar 

  113. Köhn A (2009) J Chem Phys 130:131101

    Google Scholar 

  114. Köhn A (2010) J Chem Phys 133:174118

    Google Scholar 

  115. Köhn A (2009) J Chem Phys 130:104104

    Google Scholar 

  116. Bokhan D, Ten-no S (2010) unpublished

  117. Neiss C, Hättig C, Klopper W (2006) J Chem Phys 125:064111

    Google Scholar 

  118. Bokhan D, Bernadotte S, Ten-no S (2009) J. Chem Phys 131:084105

    Google Scholar 

  119. Knizia G, Adler TB, Werner H-J (2009) J Chem Phys 130:054104

    Google Scholar 

  120. Wilke JJ, Schaefer HF (2009) J Chem Phys 131:244116

    Google Scholar 

  121. Tew DP, Klopper W (2010) Mol Phys 108:315–325

    CAS  Google Scholar 

  122. Ten-no S (2007) Chem Phys Lett 447:175–179

    CAS  Google Scholar 

  123. Roos BO, Linse P, Siegbahn PEM, Blomberg MRA (1981) Chem Phys 66:197

    Google Scholar 

  124. Torheyden M, Valeev EF (2009) J Chem Phys131:171103

  125. Shiozaki T, Werner H-J (2010) J Chem Phys 133:141103

    Google Scholar 

  126. Shiozaki T, Knizia G, Werner H-J (2011) J Chem Phys 134:034113

    Google Scholar 

  127. Shiozaki T, Werner H-J (2011) J Chem Phys 134:184104

    Google Scholar 

  128. Gdanitz RJ (1993) Chem Phys Lett 210:253

    CAS  Google Scholar 

  129. Gdanitz RJ (1998) Chem Phys Lett 283:253

    CAS  Google Scholar 

  130. Kedžuch S, Demel O, Pittner J, Noga J (2010) In: Čársky P, Paldus J, Pittner J (eds), Recent progress in coupled cluster methods. Springer, Berlin, pp 251–266

  131. Kedžuch S, Demel O, Pittner J, Ten-no S, Noga J (2011) Chem Phys Lett 511:418–423

    Google Scholar 

  132. Jeziorski B, Monkhorst HJ (1981) Phys Rev A 24:1668–1681

    CAS  Google Scholar 

  133. Banerjee A, Simons J (2981) Int J Quantum Chem 19:207–216

    Google Scholar 

  134. Ohtsuka Y, Nagase S (2010) Chem Phys Lett 485:367–370

    CAS  Google Scholar 

  135. Huang C-J, Umrigar CJ, Nightingale MP (1997) J Chem Phys 107:3007–3013

    CAS  Google Scholar 

  136. Chakravorty SJ, Gwaltney SR, Davidson ER (1993) Phys Rev A 47:3649–3670

    CAS  Google Scholar 

  137. Rassolov VA, Chipman DM (1996) J Chem Phys 104:9908–9912

    CAS  Google Scholar 

  138. Tew DP (2008) J Chem Phys 129:014104

    Google Scholar 

  139. Werner H-J, Knizia G, Manby FR (2011) Mol Phys 109:407–417

    CAS  Google Scholar 

  140. Kutzelnigg W (2008) Intern J Quantum Chem 108:2280–2290

    CAS  Google Scholar 

  141. Klopper W, Samson CCM (2002) J Chem Phys 116:6397–6410

    CAS  Google Scholar 

  142. Valeev EF (2004) Chem Phys Lett 395:190–195

    CAS  Google Scholar 

  143. Alsenoy CV (1988) J Comput Chem 9:620

    Google Scholar 

  144. Vahtras O, Almlof J, Feyreisen MW (1993) Chem Phys Lett 213:514

    CAS  Google Scholar 

  145. Feyreisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359

    Google Scholar 

  146. Bernholdt DE, Harrison RJ (1996) Chem Phys Lett 250:477

    CAS  Google Scholar 

  147. Ten-no S, Iwata S (1995) Chem Phys Lett 240:578

    CAS  Google Scholar 

  148. Ten-no S, Iwata S (1996) J Chem Phys 105:3604

    CAS  Google Scholar 

  149. Rendell AP, Lee TJ (1994) J Chem Phys 101:400

    CAS  Google Scholar 

  150. Manby FR (2003) J Chem Phys 119:4607–4613

    CAS  Google Scholar 

  151. Dunlap BI (2000) Phys Chem Chem Phys 2:2113

    CAS  Google Scholar 

  152. Ten-no S, Manby FR (2003) J Chem Phys 119:5358–5363

    CAS  Google Scholar 

  153. Becke AD (1987) J Chem Phys 88:2547

    Google Scholar 

  154. Murray CW, Handy NC, Laming GJ (1993) Mol Phys 78:997

    CAS  Google Scholar 

  155. Gill PMW, Johnson BG, Pople JA (1993) Chem Phys Lett 209:506

    CAS  Google Scholar 

  156. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346

    CAS  Google Scholar 

  157. Krack M, Köster AM (1988) J Chem Phys 108:3226

    Google Scholar 

  158. Klopper W (2004) J Chem Phys 120:10890

    CAS  Google Scholar 

  159. Yamaki D, Koch H, Ten-no S (2007) J Chem Phys 127:144104

    Google Scholar 

  160. Kedžuch S, Milko M, Noga J (2005) Int J Quantum Chem 105:929–436

    Google Scholar 

  161. Friesner RA (1985) Chem Phys Lett 116:39

    CAS  Google Scholar 

  162. Friesner RA (1988) J Chem Phys 92:3091

    CAS  Google Scholar 

  163. Murphy RB, Friesner RA, Ringnalda MN, Goddard WA III (1994) J Chem Phys 101:2986

    CAS  Google Scholar 

  164. Martinez TJ, Mehta A, Carter EA (1992) J Chem Phys 97:1876

    CAS  Google Scholar 

  165. Martinez TJ, Carter EA (1994) J Chem Phys 100:3631

    CAS  Google Scholar 

  166. Ishimura K, Ten-no S (2011) Theor Chem Acc 130:317–321

    Google Scholar 

Download references

Acknowledgments

This work is partly supported by the Grant-in-Aids for Scientific Research (B) (No. 00270471) from the Japan Society for the Promotion of Science (JSPS), and the 25th Grant-in-Aid of Tokyo Ohka Foundation the promotion of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichiro Ten-no.

Additional information

Published as part of the special collection of articles celebrating the 50th anniversary of Theoretical Chemistry Accounts/Theoretica Chimica Acta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ten-no, S. Explicitly correlated wave functions: summary and perspective. Theor Chem Acc 131, 1070 (2012). https://doi.org/10.1007/s00214-011-1070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-011-1070-1

Keywords

Navigation