Skip to main content
Log in

Theoretical study of the V(4F) + NO(2Πr) → VO(4Σ) + N(4S°) reaction compared with the Sc(2D) and Ti(3F) cases

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

To understand the title reaction, the MRCI, CCSD, CCSD(T), and DFT calculations have been done. A large domain of the ground-state potential energy surface has been explored including the activation energy barrier to form the triatomic complex, two stable intermediate complexes, V[NO] and NVO, the transition state connecting these two conformers, and the detachment of the nitrogen atom. We compared this reaction with the similar ones involving the Sc and Ti atoms. The activation barrier to form the VNO complex made from the ionic-covalent coupling decreases to approach the experimental data when the electron correlation effect is better included as in the Sc and Ti systems. The transition state connecting the two conformers was calculated to be higher than in the Sc and Ti cases probably due to larger number of nonbonding valence electrons and is probably too high with respect to the reactant energy level to allow the interconversion between the two conformers in the VNO. The direct concerted substitution (abstraction) reaction is improbable because this process will have to overcome a too high potential barrier. We have also found the transition state connecting two conformers of ScNO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ledentu V, Rahmouni A, Jeung GH, Lee YS (2004) Bull Korean Chem Soc 25:1645–1647

    Article  CAS  Google Scholar 

  2. Kim KH, Lee YS, Kim D, Kim KS, Jeung GH (2002) J Phys Chem A 106:9600–9605

    Article  CAS  Google Scholar 

  3. Kim KH, Lee YS, Moon JH, Kim Y, Jeung GH (2002) J Chem Phys 117:8385–8390

    Article  CAS  Google Scholar 

  4. Naulin C, Costes M (1999) Chem Phys Lett 310:231–239

    Article  CAS  Google Scholar 

  5. Luc P, Vetter R (2001) J Chem Phys 115:11106–11117

    Article  CAS  Google Scholar 

  6. Jeung GH, Luc P, Vetter R, Kim KH, Lee YS (2002) Phys Chem Chem Phys 4:596–600

    Article  CAS  Google Scholar 

  7. Naulin C, Hedgecock IM, Costes M (1997) Chem Phys Lett 266:335–341

    Article  CAS  Google Scholar 

  8. Vetter R, Naulin C, Costes M (2000) Phys Chem Chem Phys 2:643–649

    Article  CAS  Google Scholar 

  9. Ishida M, Yamashiro R, Matsumoto Y, Honma K (2006) J Chem Phys 124:204316-1–7

    Article  Google Scholar 

  10. Karlstrőm G, Lindh R, Malmqvist PǺ, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comput Mater Sci 28:222–239

    Article  Google Scholar 

  11. Werner HJ, Knowles PJ, Lindh R, Manby FR, Schűtz M, and others (2006) MOLPRO, version 2006.1, a package of ab initio programs, see http://www.molpro.net

  12. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  13. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  14. NIST Chemistry WebBook (2011) National Institute of Standards and Technology (NIST), Gaithersburg, MD. http://webbook.nist.gov/chemistry/. Accessed 8 Mar 2011

  15. Pedley JB, Marshall EM (1983) J Phys Chem Ref Data 12:967–1031

    Article  CAS  Google Scholar 

  16. Siegel MW, Celotta RJ, Hall JL, Levine J, Bennett RA (1972) Phys Rev A 6:607–631

    Article  CAS  Google Scholar 

  17. Lee D, Lee YS, Hagebaum-Reignier D, Jeung GH (2006) Chem Phys 327:406–414

    Article  CAS  Google Scholar 

  18. Jeung GH (2006) Theor Chem Acc 116:450–455

    Article  CAS  Google Scholar 

  19. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Rheinhold, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants (2009-0084918, 2010-0001632) from National Research Foundation, a national grant from KETEP of MKE, the EEWS program of KAIST, and CNRS. Computational resources were provided by the supercomputing center of the KISTI (KSC-2011-C2-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Sup Lee.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Dk., Park, Y.C., Lee, Y.S. et al. Theoretical study of the V(4F) + NO(2Πr) → VO(4Σ) + N(4S°) reaction compared with the Sc(2D) and Ti(3F) cases. Theor Chem Acc 130, 563–570 (2011). https://doi.org/10.1007/s00214-011-1061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1061-2

Keywords

Navigation