Skip to main content
Log in

Interaction of Fe3+meso-tetrakis (2,6-dichloro-3-sulfonatophenyl) porphyrin with cationic bilayers: magnetic switching of the porphyrin and magnetic induction at the interface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

An organized multilayer was constructed by the layer-by-layer technique in which alternating layers of metalloporphyrin and dioctadecyldimethylammonium bromide bilayers were deposited onto an indium tin oxide surface electrode. The porphyrin molecules that are organized in the different layers showed a strong electroactivity with a well-defined electrochemical process. In LbL, electroactivity could be explained only by the occurrence of electron hoping. Thus, total Kohn–Sham density functional theory (KS-DFT) was performed to better understand the conditions responsible for the electroactivity of the metalloporphyrin layers intercalated by an insulating material. Total KS-DFT theory involves local density approximation energy calculations based on spin-polarized variant of KS-DFT theory. The results revealed a magnetization switching of the metalloporphyrin induced by the interaction with the surfactant bilayer accompanied by spin polarization of the porphyrin-interacting surfactant molecule. Although discrete, the surfactant magnetization had significant repercussions on the electron conductivity. Calculations also demonstrated loss of porphyrin symmetry promoted by a parent surfactant with a shorter hydrocarbon chain, ditetradecyldimethylammonium bromide. The calculation results were corroborated by experimental results obtained by the electron paramagnetic resonance and magnetic circular dichroism techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nantes IL, Mugnol KCU (2008) Incorporation of respiratory cytochromes in liposomes: an efficient strategy to study the respiratory Chain. J Liposome Res 18:175–194

    Article  CAS  Google Scholar 

  2. Dmitri B, Ponomarev GV, Trettnak W, O’Leary P (1995) Phosphorescent complexes of porphyrin ketones: optical properties and application to oxygen sensing. Anal Chem 67:4112–4117

    Article  Google Scholar 

  3. Clyde-Watson Z, Vidal-Ferran A, Twyman LJ, Walter CJ, McCallien DWJ, Fanni S, Bampos N, Wylie SR, Sanders JKM (1998) Reversing the stereochemistry of a Diels–Alder reaction: use of metalloporphyrin oligomers to control transition state stability. New J Chem 22:493–502

    Article  CAS  Google Scholar 

  4. Qiana D-J, Wenka S-O, Nakamuraa C, Wakayamaa T, Zorinb N, Miyakea J (2002) Photoinduced hydrogen evolution by use of porphyrin, EDTA, viologens and hydrogenase in solutions and Langmuir–Blodgett films. Int J Hydrogen Energy 27:1481–1487

    Article  Google Scholar 

  5. Imahori H (2004) Giant multiporphyrin arrays as artificial light-harvesting antennas. J Phys Chem B 108:6130–6143

    Article  CAS  Google Scholar 

  6. Lin VS-Y, DiMagno SG, Therien MJ (1994) Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems. Science 264:1105–1111

    Article  CAS  Google Scholar 

  7. Gust G, Moore TA (1989) Mimicking photosynthesis. Science 244:35–41

    Article  CAS  Google Scholar 

  8. Hu X, Ritz T, Damjanovic A, Autenrieth F, Schulten KQ (2002) Photosynthetic apparatus of purple bacteria. Quart Rev Biophys 35:1–62

    Article  CAS  Google Scholar 

  9. Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  10. Gray HB (2003) Biological inorganic chemistry at the beginning of the 21st century. Proc Natl Acad Sci USA 100:3563–3568

    Article  CAS  Google Scholar 

  11. Shi Y (2001) A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8:394

    Article  Google Scholar 

  12. Kuehl CJ, Tabellion FM, Arif AM, Stang PJ (2001) Single- and double-stranded chains assembled viaconcomitant metal coordination and hydrogen bonding. Organometallics 20:1956–1959

    Article  CAS  Google Scholar 

  13. Pradilla-Sorzano J, Fackler JP Jr (1973) Base adducts of beta-ketoenolates. V. Crystal and molecular structure of cis-bis(1, 1, 1, 6, 6, 6-hexafluoro-2, 4-pentanedionato)bis(pyridine)zinc(II) and copper(II). Inorg Chem 12:1174–1182

    Article  CAS  Google Scholar 

  14. Schmitz M, Leininger S, Fan J, Arif AM, Stang PJ (1999) Preparation and solid-state properties of self-assembled dinuclear platinum(II) and palladium(II) rhomboids from carbon and silicon tectons. Organometallics 18:4817–4824

    Article  CAS  Google Scholar 

  15. Bernien M, Miguel J, Weis C, Ali ME, Kurde J, Krumme B, Panchmatia PM, Sanyal B, Piantek M, Srivastava P, Baberschke K, Oppeneer PM, Eriksson O, Kuch W, Wende H (2009) Tailoring the nature of magnetic coupling of fe-porphyrin molecules to ferromagnetic substrates. Phys Rev Lett 102:047202

    Article  CAS  Google Scholar 

  16. Grill L, Dyer M, Lafferentz L, Persson M, Peters MV, Stefan Hecht S (2007) Nano-architectures by covalent assembly of molecular building blocks. Nat Nanotech 2:687–691

    Article  CAS  Google Scholar 

  17. Scheybal A, Ramsvik T, Bertschinger R, Putero M, Nolting F, Jung TA (2005) Induced magnetic ordering in a molecular monolayer. Chem Phys Lett 411:214–220

    Article  CAS  Google Scholar 

  18. Wende H, Bernien M, Luo J, Sorg C, Ponpandian N, Kurde J, Miguel J, Piantek M, Xu X, Eckhold P, Kuch W, Baberschke K, Panchmatia PM, Sanyal B, Oppeneer PM, Eriksson O (2007) Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat Mater 6:516–520

    Article  CAS  Google Scholar 

  19. Frandsen C, Bahl CRH, Lebech B, Lefmann K, Kuhn LT, Keller L, Andersen NH, Zimmermann M, Johnson E, Klausen SN, Mørup S (2005) Oriented attachment and exchange coupling of α-Fe2O3 nanoparticles. Phys Rev B 72:214406

    Article  Google Scholar 

  20. Bernien M, Xu X, Miguel J, Piantek M, Eckhold P, Luo J, Kurde J, Kuch W, Baberschke K, Wende H, Srivastava P (2007) Fe-porphyrin monolayers on ferromagnetic substrates: electronic structure and magnetic coupling strength. Phys Rev B 76:214406

    Article  Google Scholar 

  21. Prieto T, Mugnol KCU, Araujo JC, Souza FL, Soares VA, Cilento G, Nantes IL (2007) Peroxidase model systems in heterogeneous media. In: Nantes IL, Brochsztain S (eds) Catalysis and photochemistry in heterogeneous media, 1st edn. Research Signpost, India, Kerala, p 1. ISBN:978-81-308-0168-1

  22. Swiegers GF, Malefeste TJ (2000) New self-assembled structural motifs in coordination chemistry. Chem Rev 100:3483–3537

    Article  CAS  Google Scholar 

  23. Lehn JM (1995) Supramolecular chemistry concepts and perspectives. VCH, Weinheim, pp 139–160

    Book  Google Scholar 

  24. Robson R (1996) In: Atwood JL, Davies JED, MacNicol DD, Vögtle F, Toda F, Bishop R (eds) Comprehensive supramolecular chemistry, vol 6. Pergamon, Oxford, p 733

  25. Lenninger S, Olenyuk B, Stang P (2000) Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem Rev 100:853–907

    Article  Google Scholar 

  26. Uller E, Demleitner B, Bernt I, Saalfrank RW (2000) Synergistic effect of serendipity and rational design in supramolecular chemistry. In: Fujita M (ed) Structure and bonding, vol 96. Springer, Berlin, p 149

    Google Scholar 

  27. Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46(14):2366–2393

    Article  CAS  Google Scholar 

  28. Piguet C, Bernardinelli G, Hopfgartner G (1997) Helicates as versatile supramolecular complexes. Chem Rev 97:2005–2062

    Article  CAS  Google Scholar 

  29. Bartlett RJ, Lotrich VF, Schweigert IV (2005) Ab initio density functional theory: the best of both worlds? J Chem Phys 123:062205

    Article  Google Scholar 

  30. Bartlett RJ, Schweigert IV, Lotrich VF (2006) Ab initio DFT: getting the right answer for the right reason. J Mol Struct: Theochem 771:1–8

    Article  CAS  Google Scholar 

  31. Chaia J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functional. J Chem Phys 128:084106

    Article  Google Scholar 

  32. Fan J, Autschbach J, Ziegler T (2010) Electronic structure and circular dichroism of tris(bipyridyl) metal complexes within density functional theory. Inorg Chem 49:1355–1362

    Article  CAS  Google Scholar 

  33. Xue ZL, Mack J, Lu H, Zhang L, You XZ, Kuzuhara D, Stillman M, Yamada H, Yamauchi S, Kobayashi N, Shen Z (2011) The synthesis and properties of free-base [14] triphyrin (2.1.1) Compounds and the formation of subporphyrinoid metal complexes. Chem Eur J 17:4396–4407

    Article  CAS  Google Scholar 

  34. Song J-W, Tsuneda T, Sato T, Hirao K (2011) An examination of density functional theories on isomerization energy calculations of organic molecules. Theor Chem Acc. doi:10.1007/s00214-011-0997-6

  35. Boos BO (2008) Multiconfigurational quantum chemistry for ground and excited states. In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids. Springer, Heidelberg, pp 125–156

    Google Scholar 

  36. Tobita M, Perera SA, Musial M, Bartlett RJ, Nooijen M, Lee JS (2003) Critical comparison of single-reference and multireference coupled-cluster methods: Geometry, harmonic frequencies, and excitation energies of N2O2. J Phys Chem 119:10713–10723

    Article  CAS  Google Scholar 

  37. Mahapatra US, Chattopadhyay S (2011) Application of the uncoupled state-specific multireference coupled cluster method to a weakly bonded system: exploring the ground state Be2. J Phys B: At Mol Opt Phys 44:105102–105114

    Article  Google Scholar 

  38. De Luca G, Romeo A, Scolaro LM, Ricciardi G, Rosa A (2009) Sitting-atop metallo-porphyrin complexes: experimental and theoretical investigations on such elusive species. Inorg Chem 48:8493–8507

    Article  Google Scholar 

  39. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Symmetry and broken symmetry in molecular orbital description of unstable molecules IV: comparison between single- and multi-reference computational results for antiaromtic molecules. Theor Chem Acc. doi:10.1007/s00214-011-0941-9

  40. Saito T, Nishihara S, Yamanaka S, Kitagawa Y, Kawakami T, Yamada S, Isobe H, Okumura M, Yamaguchi K (2011) Singlet–triplet energy gap for trimethylenemethane, oxyallyl diradical, and related species: single- and multireference computational results. Theor Chem Acc. doi:10.1007/s00214-011-0914-z

  41. Paterno LG, Mattoso LHC, Oliveira ON Jr (2001) Filmes poliméricos ultrafinos produzidos pela técnica de automontagem: preparação, propriedades e aplicações. Quim Nova 24:228–235

    Article  CAS  Google Scholar 

  42. Crespilho FN, Silva WC, Zucolotto V Supramolecular assemblies of metallophthalocyanines: Physicohemcial properties and aplications. In: Nantes IL, Brochsztain S (eds) Peroxidase model system in heterogeneous media in catalysis and photochemistry in heterogeneous media, 1st edn. Research Signpost, India, Kerala

  43. Vidotti M, Silva MR, Salvador RP, Torresi SIC, Dall’Antonia LH (2008) Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochim Acta 53:4030

    Article  CAS  Google Scholar 

  44. Watanabe S, Kimura H, Sato T, Shibata H, Sakamoto F, Azumi R, Sakai H, Abe M, Matsumoto M (2008) Micro- and nanopatterned copper structures using directed self-assembly on templates fabricated from phase-separated mixed Langmuir—Blodgett films. Langmuir 24:8735

    Article  CAS  Google Scholar 

  45. Mandal P, Srinivasa RS, Talwar SS, Major SS (2008) CdS/ZnS core-shell nanoparticles in arachidic acid LB films. Appl Surf Sci 254:5028

    Article  CAS  Google Scholar 

  46. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  47. Decher G, Eckle M, Struth B, Schmitt J (1998) Layer-by-layer assembled multicomposite films. Curr Opin Coll Interface Sci 3:32–39

    Article  CAS  Google Scholar 

  48. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  49. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  50. Arantes JT, Lima MP, Fazzio A, Xiang HJ, Wei SH, Dalpian GM (2009) Effects of side-chain and electron exchange correlation on the band structure of perylene diimide liquid crystals: a density functional study. J Phys Chem B 113:5376–5380

    Article  CAS  Google Scholar 

  51. Crespilho FN, Zucolotto V, Oliveira ON Jr, Nart FC (2006) Electrochemistry of Layer-by-Layer films: a review. Int J Electrochem Sci 1:194–214

    CAS  Google Scholar 

  52. Siqueira JR Jr, Gasparotto LHS, Crespilho FN, Carvalho AJF, Zucolotto V, Oliveira ON Jr (2006) Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J Phys Chem B 110:22690–22694

    Article  CAS  Google Scholar 

  53. Crespilho FN, Zucolotto V, Brett CMA, Oliveira ON Jr, Nart FC (2006) Enhanced charge transport and incorporation of redox mediators in layer-by-Layer films containing PAMAM-encapsulated gold nanoparticles. J Phys Chem B 110:17478–17483

    Article  CAS  Google Scholar 

  54. Crespilho FN, Huguenin F, Zucolotto V, Olivi P, Nart FC, Oliveira ON Jr (2006) Dendrimers as nanoreactors to produce platinum nanoparticles embedded in layer-by-layer films for methanol-tolerant cathodes. Electrochem Commun 8:348–352

    Article  CAS  Google Scholar 

  55. Laurent D, Schlenoff JB (1997) Multilayer assemblies of redox polyelectrolytes. Langmuir 13:1552–1557

    Article  CAS  Google Scholar 

  56. Barley MH, Takeuchi KJ, Meyer TJ (1986) Electrocatalytic reduction of nitrite to ammonia based on a water-soluble iron porphyrin. J Am Chem Soc 108:5876–5885

    Article  CAS  Google Scholar 

  57. Chen S-M, Chiu S-W (2000) The electrocatalytic transformation of HS, S2O3 2−, S4O6 2− and SO3 2− to SO4 2− and SO3 2− to SO4 2− by water-soluble iron porphyrins. Electrochim Acta 45:4399–4408

    Article  CAS  Google Scholar 

  58. Kaaret TW, Zhang G-H, Bruice TC (1991) Electrochemistry and the dependence of potentials on pH of iron and manganese tetraphenylporphyrins in aqueous solution. J Am Chem Soc 113:4652–4656

    Article  CAS  Google Scholar 

  59. Kadish KM, Caemelbecke EV, D’Souza F, Gueletii E, Fukuzumi S, Miyamoto K, Suenobu T, Tabard A, Guilard R (1998) Kinetic and thermodynamic studies of iron(III) and iron(IV) σ–bonded porphyrins. Formation and reactivity of [(OEP)Fe(R)]n+, where OEP Is the dianion of octaethylporphyrin (n = 0, 1, 2, 3) and R = C6H5, 3, 4, 5–C6F3H2, 2, 4, 6–C6F3H2, C6F4H, or C6F5. Inorg Chem 37:1759–1766

    Article  CAS  Google Scholar 

  60. Kadish KM, Caemelbecke EV, D’Souza F, Medforth CJ, Smith KM, Tabard A, Guilard R (1993) Generation of a stable σ-bonded iron(1 V) porphyrin. Formation and reactivity of [(OETPP)FeIV(C6H5)]n+ (n = 1–3; OETPP = dianion of 2, 3, 7, 8, 12, 13, 17, 18-octaethyl-5, 10, 15, 20-tetraphenylporphyrin. Organometallics 12:2411–2413

    Article  CAS  Google Scholar 

  61. Liu M-H, Su YO (1998) Selective electrocatalysis of alkene oxidations in aqueous media. J Electroanal Chem 452:113–125

    Article  CAS  Google Scholar 

  62. Lei J, Ju H, Ikeda O (2004) Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode. J Electroanal Chem 567:331–338

    Article  CAS  Google Scholar 

  63. Rana MS, Tamagak K (2005) Formation of ferryl porphyrin by electrochemical reduction of iron porphyrin in aqueous solution. J Electroanal Chem 581:145–152

    Article  CAS  Google Scholar 

  64. Chylarecka D, Kim TK, Tarafder K, Mller K, Gdel K, Czekaj I, Wckerlin C, Cinchetti M, Ali ME, Piamonteze C, Schmitt F, Wüstenberg JP, Ziegler C, Nolting F, Aeschlimann M, Oppeneer PM, Ballav N, Jung TA (2011) Indirect magnetic coupling of manganese porphyrin to a ferromagnetic cobalt substrate. J Phys Chem C 115:1295–1301

    Article  CAS  Google Scholar 

  65. Nantes IL, Crespilho FN, Mugnol KCU, Araújo-Chaves JC, Luz RAS, Otaciro Rangel Nascimento OR, Pinto SMS (2010) Magnetic circular dichroism applied in the study of symmetry and functional properties of porphyrinoids. In: David S. Rodger (eds) Circular dichroism: theory and spectroscopy. Nova Science Publishers, Inc., USA. ISBN: 978-1-61122-522-8

  66. Kobayashi N, Nakai K (2007) Applications of magnetic circular dichroism spectroscopy to porphyrins and phthalocyanines. Chem Commun 4077–4092

  67. Macka J, Stillman MJ, Kobayashi N (2007) Application of MCD spectroscopy to porphyrinoids. Coord Chem Rev 251:429–453

    Article  Google Scholar 

  68. Suchkova SA, Soldatov A, Dziedzik-Kocurek K, Stillman MJ (2009) The role of spin state on the local atomic and electronic structures of some metalloporphyrin complex. J Phys: Conf Ser 190:012211

    Article  Google Scholar 

  69. Solheim H, Ruud K, Coriani S, Norman P (2008) The A and B terms of magnetic circular dichroism revisited. J Phys Chem A 112:9615–9618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to FAPESP, CNPq, and CAPES. KCUM is research fellow supported by a FAPESP fellowship. We thank also to Karl J. Jalkanen, FAPESP-supported visitor professor of Universidade do Vale do Paraíba (UNIVAP), Brazil for the invitation to contribute our work to the Imamura Festschrift Issue of TCA and by the critical reading and comments contributing to improve the manuscript. We thank UFABC and CENAPAD-Campinas/SP (Centro Nacional de Processamento de Alto Desempenho) for the computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeverson T. Arantes or Iseli L. Nantes.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mugnol, K.C.U., Martins, M.V.A., Nascimento, E.C. et al. Interaction of Fe3+meso-tetrakis (2,6-dichloro-3-sulfonatophenyl) porphyrin with cationic bilayers: magnetic switching of the porphyrin and magnetic induction at the interface. Theor Chem Acc 130, 829–837 (2011). https://doi.org/10.1007/s00214-011-1055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1055-0

Keywords

Navigation