Role of CH–π interaction energy in self-assembled gear-shaped amphiphile molecules: correlated ab initio molecular orbital and density functional theory study

Abstract

Ab initio molecular orbital and density functional theory calculations with inclusion of dispersion interaction effect are employed to reveal the characteristic features of intermolecular interactions for the molecular capsule (1 6) consisting of six gear-shaped amphiphile molecules (1) discovered by Hiraoka et al. (J Am Chem Soc 130:14368–14369, 2008). The contributions of CH–π and π–π type dispersion energies are found to be indispensable for the formation of hexameric capsule 1 6 by the analysis of decomposed interaction energies between fragmented-model species in the 1 molecule. We have also calculated the hexameric capsule (2 6) from demethylated 1 molecule (2). Such subtle structural difference induces the different characters of intermolecular interactions, in which the stabilization energy of hexameric 2 6 capsule is about 40 kcal/mol smaller than that of the original 1 6 capsule, due to the lack of three methyl groups for the CH–π interactions in 2 molecules.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rebek J Jr (2005) Angew Chem Int Ed 44:2068–2074

    Article  CAS  Google Scholar 

  2. 2.

    Lützen A (2005) Angew Chem Int Ed 44:1000–1002

    Article  Google Scholar 

  3. 3.

    Kobayashi K, Shirasak T, Yamaguchi K, Sakamoto S, Horn E, Furukawa N (2000) Chem Commun 41–42

  4. 4.

    Purse BW, Rebek J Jr (2005) Proc Natl Acad Sci USA 102:10777–10782

    Article  CAS  Google Scholar 

  5. 5.

    Shimizu S, Kiuchi T, Pan N (2007) Angew Chem Int Ed 46:6442–6445

    Article  CAS  Google Scholar 

  6. 6.

    Baillargeon P, Dory YL (2008) J Am Chem Soc 130:5640–5641

    Article  CAS  Google Scholar 

  7. 7.

    Dalgarno SJ, Power NP, Atwood JL (2008) Coord Chem Rev 252:825–841

    Article  CAS  Google Scholar 

  8. 8.

    Fiedler D, Bergman RG, Raymond KN (2004) Angew Chem Int Ed 43:6748–6758

    Article  CAS  Google Scholar 

  9. 9.

    Pluth MD, Bergman RG, Raymond KN (2007) Science 316:85–88

    Article  CAS  Google Scholar 

  10. 10.

    Yoshizawa M, Tamura M, Fujita M (2006) Science 312:251–254

    Article  CAS  Google Scholar 

  11. 11.

    Sato S, Iida J, Suzuki K, Kawano M, Ozeki T, Fujita M (2006) Science 313:1273–1276

    Article  CAS  Google Scholar 

  12. 12.

    Yamanaka M, Yamada Y, Sei Y, Yamaguchi K, Kobayashi K (2006) J Am Chem Soc 128:1531–1539

    Article  CAS  Google Scholar 

  13. 13.

    Haino T, Kobayashi M, Fukazawa Y (2006) Eur J Chem 12:3310–3319

    Article  CAS  Google Scholar 

  14. 14.

    Ikeda A, Udzu H, Zhong Z, Shinkai S, Sakamoto S, Yamaguchi K (2001) J Am Chem Soc 123:3872–3877

    Article  CAS  Google Scholar 

  15. 15.

    Hiraoka S, Harano K, Shiro M, Shionoya M (2005) Angew Chem Int Ed 44:2727–2731

    Article  CAS  Google Scholar 

  16. 16.

    Hiraoka S, Harano K, Shiro M, Ozawa Y, Yasuda N, Toriumi K, Shionoya M (2006) Angew Chem Int Ed 45:6488–6491

    Article  CAS  Google Scholar 

  17. 17.

    Harano K, Hiraoka S, Shionoya M (2007) J Am Chem Soc 129:5300–5301

    Article  CAS  Google Scholar 

  18. 18.

    Hiraoka S, Harano K, Shiro M, Shinoya M (2008) J Am Chem Soc 130:14368–14369

    Article  CAS  Google Scholar 

  19. 19.

    Hiraoka S, Harano K, Nakamura T, Shiro M, Shionoya M (2009) Angew Chem Int Ed 48:7006–7009

    Article  CAS  Google Scholar 

  20. 20.

    Frisch MJ, Trucks GW, Schlegel HB et al (2004) GAUSSIAN 03. Gaussian, Inc., Wallingford

    Google Scholar 

  21. 21.

    Frisch MJ, Trucks GW, Schlegel HB et al (2009) GAUSSIAN 09. Gaussian, Inc., Wallingford

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Grant-in-Aid for Scientific Research and for the priority area by Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Masanori Tachikawa.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koseki, J., Kita, Y., Hiraoka, S. et al. Role of CH–π interaction energy in self-assembled gear-shaped amphiphile molecules: correlated ab initio molecular orbital and density functional theory study. Theor Chem Acc 130, 1055–1059 (2011). https://doi.org/10.1007/s00214-011-1053-2

Download citation

Keywords

  • Gear-shaped amphiphile molecule
  • Hexameric nano-capsule
  • Van der Waals force
  • π–π and CH–π dispersion interaction energies