Skip to main content
Log in

Interference-induced electron- and hole-conduction asymmetry

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Principles established by Shephard and Paddon-Row for optimizing and controlling intramolecular electron transport through the modulation of interfering pathways are employed to design new molecules for steady-state conduction experiments aimed at manifesting electron–hole conduction asymmetry in a unique way. First, a review of the basic principles is presented through application to a pertinent model system in which a molecule containing donor and acceptor terminal linking groups with an internal multiple-pathway bridge is used to span two metal electrodes. Different interference patterns are produced depending on whether the through-molecule coupling pathways are symmetric or antisymmetric with respect to a topological bisecting plane, giving rise to asymmetric electron and hole conductances at the tight-binding (Hückel) level; this process is also described from a complementary molecular-orbital viewpoint. Subsequently, a new molecular system based on organic polyradicals is designed to allow such asymmetry to be realized in single-molecule conduction experiments. These polyradicals are analyzed using analogous simple models, density-functional theory (DFT) calculations of steady-state transmission, and intermediate neglect of differential overlap (INDO) calculations of intramolecular connectivity, verifying that polyradicals at low temperatures should show experimentally measureable electron–hole conduction asymmetry. A key feature of this system is that the polyradicals form a narrow partially occupied band of orbitals that lie within and well separated from the HOMO and LUMO orbitals of the surrounding molecular scaffold, allowing for holes and electrons to be transported through the same molecular band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Larsson S (1981) Electron transfer in chemical and biological systems. Orbital rules for nonadiabatic transfer. J Am Chem Soc 103:4034–4040

    Article  CAS  Google Scholar 

  2. Beratan DN, Hopfield JJ (1984) Calculation of electron tunneling matrix elements in rigid systems: mixed-valence dithiaspirocyclobutane molecules. J Am Chem Soc 106:1584–1594

    Article  CAS  Google Scholar 

  3. Mikkelsen KV, Ratner MA (1987) Electron tunneling in solid-state electron-transfer reactions. Chem Rev 87:113–153

    Article  CAS  Google Scholar 

  4. Joachim C (1987) Ligand-length dependence of the intramolecular electron transfer through-bond coupling parameter. Chem Phys 116:339

    Article  CAS  Google Scholar 

  5. Onuchic JN, Beratan DN (1987) Molecular bridge effects on distant charge tunneling. J Am Chem Soc 109:6771–6778

    Article  CAS  Google Scholar 

  6. Beratan DN, Onuchic JN, Hopfield JJ (1987) Electron tunneling through covalent and noncovalent pathways in proteins. J Chem Phys 86:4488–4498

    Article  CAS  Google Scholar 

  7. Rendell APL, Bacskay GB, Hush NS (1988) Electron transfer via dithiaspiroalkane linkages. Nature of long-range through-bond electronic coupling in disulfoxide radical cations and bis(metal) complexes and implications for the characterization of the SO bond. J Am Chem Soc 110:8343

    Article  CAS  Google Scholar 

  8. Sautet P, Joachim C (1988) Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem Phys Lett 153:511–516

    Article  CAS  Google Scholar 

  9. Reimers JR, Hush NS (1989) Electron and energy transfer through bridged systems. I. Formalism. Chem Phys 134:323

    Article  CAS  Google Scholar 

  10. Ratner MA (1990) Bridge-assisted electron transfer: effective electronic coupling. J Phys Chem 94:4877–4883

    Article  CAS  Google Scholar 

  11. Reimers JR, Hush NS (1990) Electron and energy transfer through bridged systems. II. Tight binding linkages with zero asymmetric band gap. Chem Phys 146:89

    Article  CAS  Google Scholar 

  12. Onuchic JN, De Andrade PCP, Beratan DN (1991) Electron tunneling pathways in proteins: a method to compute tunneling matrix elements in very large systems. J Chem Phys 95:1131–1138

    Article  CAS  Google Scholar 

  13. Reimers JR, Hush NS (1994) Electron and energy transfer through bridged systems. III. Tight binding linkages with finite asymmetric band gap. J Photochem Photobiol A 82:31

    Article  Google Scholar 

  14. Paulson BP, Curtiss LA, Bal B, Closs GL, Miller JR (1996) Investigation of through-bond coupling dependence on spacer structure. J Am Chem Soc 118:378–387

    Article  CAS  Google Scholar 

  15. Skourtis SS, Onuchic JN, Beratan DN (1996) A method to analyze multi-pathway effects on protein mediated donor-acceptor coupling interactions. Inorg Chim Acta 243:167–175

    Article  CAS  Google Scholar 

  16. Jordan KD, Paddon-Row MN (1992) Analysis of the interactions responsible for long-range through-bond-mediated electronic coupling between remote chromophores attached to rigid polynorbornyl bridges. Chem Rev 92:395

    Article  CAS  Google Scholar 

  17. Shephard MJ, Paddon-Row MN (1995) Application of the parity rule of through-bond coupling to the design of “superbridges” that exhibit greatly enhanced electronic coupling. J Phys Chem 99:17497–17500

    Article  CAS  Google Scholar 

  18. Liang C, Newton MD (1992) Ab initio studies of electron transfer: pathway analysis of effective transfer integrals. J Phys Chem 96:2855

    Article  CAS  Google Scholar 

  19. Naleway CA, Curtiss LA, Miller JR (1991) Superexchange-pathway model for long-distance electronic couplings. J Phys Chem 95:8434

    Article  CAS  Google Scholar 

  20. Shephard MJ, Paddon-Row MN, Jordan KD (1994) Why is a simple n-alkyl bridge more efficient than a polynorbornyl bridge at mediating through-bond coupling? J Am Chem Soc 116:5328–5333

    Article  CAS  Google Scholar 

  21. Newton MD (1999) Control of electron transfer kinetics: models for medium reorganization and donor-acceptor coupling. Adv Chem Phys 106:303–375

    Article  CAS  Google Scholar 

  22. Skourtis SS, Beratan DN (1999) Theories of structure-function relationships for bridge-mediated electron transfer reactions. Adv Chem Phys 106:377–452

    Article  CAS  Google Scholar 

  23. Regan JJ, Onuchic JN (1999) Electron-transfer tubes. Adv Chem Phys 107:497–553

    Article  CAS  Google Scholar 

  24. Paddon-Row MN, Shephard MJ (1997) Through-bond orbital coupling the parity rule and the design of “Superbridges” which exhibit greatly enhanced electronic coupling: a natural bond orbital analysis. J Am Chem Soc 119:5355

    Article  CAS  Google Scholar 

  25. Nitzan A (2001) A relationship between electron-transfer rates and molecular conduction. J Phys Chem A 105:2677

    Article  CAS  Google Scholar 

  26. Cheong A, Roitberg AE, Mujica V, Ratner MA (1994) Resonances and interference effects on the effective electronic coupling in electron transfer. J Photochem Photobio A 82:81–86

    Article  CAS  Google Scholar 

  27. Mujica V, Kemp M, Ratner MA (1994) Electron conduction in molecular wires. II. Application to scanning tunneling microscopy. J Chem Phys 101:6856–6864

    Article  Google Scholar 

  28. Mujica V, Kemp M, Ratner MA (1994) Electron conduction in molecular wires. I. A scattering formalism. J Chem Phys 101:6849–6855

    Article  Google Scholar 

  29. Yaliraki SN, Roitberg AE, Gonzalez C, Mujica V, Ratner MA (1999) The injecting energy at molecule/metal interfaces: implications for conductance of molecular junctions from an ab initio molecular description. J Chem Phys 111:6997–7002

    Article  CAS  Google Scholar 

  30. Mujica V, Nitzan A, Mao Y, Davis W, Kemp M, Roitberg A, Ratner MA (1999) Electron transfer in molecules and molecular wires: geometry dependence, coherent transfer, and control. Adv Chem Phys 107:403–429

    Article  CAS  Google Scholar 

  31. Hall LE, Reimers JR, Hush NS, Silverbrook K (2000) A priori Green’s-function-based calculations of current-voltage characteristics of molecular wires. J Chem Phys 112:1510

    Article  CAS  Google Scholar 

  32. Patoux C, Coudret C, Launay JP, Joachim C, Gourdon A (1997) Topological effects on intramolecular electron transfer via quantum interference. Inorg Chem 36:5037–5049

    Article  CAS  Google Scholar 

  33. Emberly EG, Kirczenow G (1999) Antiresonances in molecular wires. J Phys Condens Matter 11:6911–6926

    Article  CAS  Google Scholar 

  34. Lee HW (1999) Generic transmission zeros and in-phase resonances in time-reversal symmetric single channel transport. Phys Rev Lett 82:2358–2361

    Article  CAS  Google Scholar 

  35. Baer R, Neuhauser D (2002) Phase coherent electronics: a molecular switch based on quantum interference. J Am Chem Soc 124:4200–4201

    Article  CAS  Google Scholar 

  36. Mayor M, Weber HB, Reichert J, Elbing M, Von Hänisch C, Beckmann D, Fischer M (2003) Electric current through a molecular rod—relevance of the position of the anchor groups. Angew Chem Int Ed 42:5834–5838

    Article  CAS  Google Scholar 

  37. Stadler R, Forshaw M, Joachim C (2003) Modulation of electron transmission for molecular data storage. Nanotechnology 14:138–142

    Article  CAS  Google Scholar 

  38. Stadler R, Ami S, Joachim C, Forshaw M (2004) Integrating logic functions inside a single molecule. Nanotechnology 15:S115–S121

    Article  CAS  Google Scholar 

  39. Walter D, Neuhauser D, Baer R (2004) Quantum interference in polycyclic hydrocarbon molecular wires. Chem Phys 299:139–145

    Article  CAS  Google Scholar 

  40. Ernzerhof M, Zhuang M, Rocheleau P (2005) Side-chain effects in molecular electronic devices. J Chem Phys 123:134704/1–134704/5

    Article  CAS  Google Scholar 

  41. Stadler R, Thygesen KS, Jacobsen KW (2005) An ab initio study of electron transport through nitrobenzene: the influence of leads and contacts. Nanotechnology 16:S155–S160

    Article  CAS  Google Scholar 

  42. Cardamone DM, Stafford CA, Mazumdar S (2006) Controlling quantum transport through a single molecule. Nano Lett 6:2422–2426

    Article  CAS  Google Scholar 

  43. Papadopoulos TA, Grace IM, Lambert CJ (2006) Control of electron transport through Fano resonances in molecular wires. Phys Rev B Condens Matter Mater Phys 74:193306

    Article  CAS  Google Scholar 

  44. Ernzerhof M (2007) A simple model of molecular electronic devices and its analytical solution. J Chem Phys 127:204709

    Article  CAS  Google Scholar 

  45. Stafford CA, Cardamone DM, Mazumdar S (2007) The quantum interference effect transistor. Nanotechnology 18:424014

    Article  CAS  Google Scholar 

  46. Maiti SK (2007) Quantum transport through polycyclic hydrocarbon molecules. Phys Lett A 366:114–119

    Article  CAS  Google Scholar 

  47. Solomon GC, Andrews DQ, Goldsmith RH, Hansen T, Wasielewski MR, Van DRP, Ratner MA (2008) Quantum interference in acyclic systems: conductance of cross-conjugated molecules. J Am Chem Soc 130:17301–17308

    Article  CAS  Google Scholar 

  48. Wohlthat S, Pauly F, Reimers JR (2008) Two-dimensional phenanthroline-based extended pi-conjugated molecules for single-molecule conduction. J Phys Condens Matter 20:295208

    Article  CAS  Google Scholar 

  49. Andrews DQ, Solomon GC, Goldsmith RH, Hansen T, Wasielewski MR, Van Duyne RP, Ratner MA (2008) Quantum interference: the structural dependence of electron transmission through model systems and cross-conjugated molecules. J Phys Chem C 112:16991–16998

    Article  CAS  Google Scholar 

  50. Andrews DQ, Solomon GC, Van Duyne RP, Ratner MA (2008) Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J Am Chem Soc 130:17309–17319

    Article  CAS  Google Scholar 

  51. Fowler PW, Pickup BT, Todorova TZ (2008) Equiconducting molecular conductors. Chem Phys Lett 465:142–146

    Article  CAS  Google Scholar 

  52. Ke S-H, Yang W, Baranger HU (2008) Quantum-interference-controlled molecular electronics. Nano Lett 8:3257–3261

    Article  CAS  Google Scholar 

  53. Pickup BT, Fowler PW (2008) An analytical model for steady-state currents in conjugated systems. Chem Phys Lett 459:198–202

    Article  CAS  Google Scholar 

  54. Solomon GC, Andrews DQ, Hansen T, Goldsmith RH, Van Duyne RP, Ratner MA (2008) Understanding quantum interference in coherent molecular conduction. J Chem Phys 129:054701

    Article  CAS  Google Scholar 

  55. Solomon GC, Andrews DQ, van Duyne RP, Ratner MA (2008) When things are not as they seem: quantum interference turns molecular electron transfer “Rules” upside down. J Am Chem Soc 130:7788–7789

    Article  CAS  Google Scholar 

  56. Yoshizawa K, Tada T, Staykov A (2008) Orbital views of the electron transport in molecular devices. J Am Chem Soc 130:9406–9413

    Article  CAS  Google Scholar 

  57. Fowler PW, Pickup BT, Todorova TZ, Pisanski T (2009) Fragment analysis of single-molecule conduction. J Chem Phys 130:174708

    Article  CAS  Google Scholar 

  58. Hansen T, Solomon GC, Andrews DQ, Ratner MA (2009) Interfering pathways in benzene: an analytical treatment. J Chem Phys 131:194704

    Article  CAS  Google Scholar 

  59. Solomon GC, Andrews DQ, Van Duyne RP, Ratner MA (2009) Electron transport through conjugated molecules: when the pi system only tells part of the story. Chem Phys Chem 10:257–264

    Article  CAS  Google Scholar 

  60. Stadler R (2009) Quantum interference effects in electron transport through nitrobenzene with pyridil anchor groups. Phys Rev B Condens Matter Mater Phys 80:125401

    Article  CAS  Google Scholar 

  61. Tsuji Y, Staykov A, Yoshizawa K (2009) Orbital control of the conductance photoswitching in diarylethene. J Phys Chem C 113:21477–21483

    Article  CAS  Google Scholar 

  62. Tsuji Y, Staykov A, Yoshizawa K (2009) Orbital view concept applied on photoswitching systems. Thin Solid Films 518:444–447

    Article  CAS  Google Scholar 

  63. Herrmann C, Solomon GC, Subotnik JE, Mujica V, Ratner MA (2010) Ghost transmission: how large basis sets can make electron transport calculations worse. J Chem Phys 132:024103/1–024103/17

    Article  CAS  Google Scholar 

  64. Li X, Staykov A, Yoshizawa K (2010) Orbital views of the electron transport through polycyclic aromatic hydrocarbons with different molecular sizes and edge type structures. J Phys Chem C 114:9997–10003

    Article  CAS  Google Scholar 

  65. Rincon J, Hallberg K, Aligia AA, Ramasesha S (2009) Quantum interference in coherent molecular conductance. Phys Rev Lett 103:266807

    Article  CAS  Google Scholar 

  66. Liu H, Ni W, Zhao J, Wang N, Guo Y, Taketsugu T, Kiguchi M, Murakoshi K (2009) Nonequilibrium Green’s function study on the electronic structure and transportation behavior of the conjugated molecular junction: terminal connections and intramolecular connections. J Chem Phys 130:244501

    Article  CAS  Google Scholar 

  67. Herrmann C, Solomon GC, Ratner MA (2010) Local pathways in coherent electron transport through iron porphyrin complexes: a challenge for first-principles transport calculations. J Phys Chem C 114:20813–20820

    Article  CAS  Google Scholar 

  68. Markussen T, Schiotz J, Thygesen KS (2010) Electrochemical control of quantum interference in anthraquinone-based molecular switches. J Chem Phys 132:224104

    Article  CAS  Google Scholar 

  69. Ricks AB, Solomon GC, Colvin MT, Scott AM, Chen K, Ratner MA, Wasielewski MR (2010) Controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges. J Am Chem Soc 132:15427–15434

    Article  CAS  Google Scholar 

  70. Saha KK, Nikolic BK, Meunier V, Lu W, Bernholc J (2010) Quantum-interference-controlled three-terminal molecular transistors based on a single ring-shaped molecule connected to graphene nanoribbon electrodes. Phys Rev Lett 105:236803

    Article  CAS  Google Scholar 

  71. Solomon GC, Herrmann C, Vura-Weis J, Wasielewski MR, Ratner MA (2010) The chameleonic nature of electron transport through pi-stacked systems. J Am Chem Soc 132:7887–7889

    Article  CAS  Google Scholar 

  72. Solomon GC, Vura-Weis J, Herrmann C, Wasielewski MR, Ratner MA (2010) Understanding coherent transport through pi-stacked systems upon spatial dislocation. J Phys Chem B 114:14735–14744

    Article  CAS  Google Scholar 

  73. Yang H, Mayne AJ, Boucherit M, Comtet G, Dujardin G, Kuk Y (2010) Quantum interference channeling at graphene edges. Nano Lett 10:943–947

    Article  CAS  Google Scholar 

  74. Fracasso D, Valkenier H, Hummelen JC, Solomon GC, Chiechi RC (2011) Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with Eutectic Ga-In (EGaIn) top-contacts. J Am Chem Soc 133:9556–9563

    Article  CAS  Google Scholar 

  75. Solomon GC, Andrews DQ, Ratner MA (2011) Quantum interference in acyclic molecules. In: Siebbeles LDA, Grozema FC (eds) Charge and exciton transport through molecular wires. Wiley, London, pp 19–59

  76. Tsuji Y, Staykov A, Yoshizawa K (2011) Orbital views of molecular conductance perturbed by anchor units. J Am Chem Soc 133:5955–5965

    Article  CAS  Google Scholar 

  77. Markussen T, Stadler R, Thygesen KS (2010) The relation between structure and quantum interference in single molecule junctions. Nano Lett 10:4260–4265

    Article  CAS  Google Scholar 

  78. Li X, Staykov A, Yoshizawa K (2011) Orbital views of the electron transport through heterocyclic aromatic hydrocarbons. Theor Chem Acc. doi:10.1007/s00214-011-0968-y

  79. Naraba T, Mizushima Y, Noake H, Imamura A, Igarashi Y, Torihashi Y, Nishioka A (1965) Preparation and electrical properties of poly(tetracyanoethylene) copper chelate film. Jpn J Appl Phys 4:977–986

    Article  CAS  Google Scholar 

  80. Naraba T, Mizushima Y, Noake H, Nishioka A, Igarashi Y, Imamura A, Torihashi Y (1967) Preparation and electrical properties of poly(tetracyanoethylene copper chelate) film. Rev Electr Commun Lab 15:551–562

    CAS  Google Scholar 

  81. Yamabe T, Tanaka K, Teramae H, Fukui K, Imamura A, Shirakawa H, Ikeda S (1979) Electronic properties of pure and doped polyacetylenes. J Phys C 12:L257–L262

    Article  CAS  Google Scholar 

  82. Seki K, Tanaka H, Ohta T, Aoki Y, Imamura A, Fujimoto H, Yamamoto H, Inokuchi H (1990) Electronic structure of poly(tetrafluoroethylene) studied by UPS, VUV absorption, and band calculations. Phys Scr 41:167–171

    Article  CAS  Google Scholar 

  83. Imamura A, Aoki Y, Nishimoto K, Kurihara Y, Nagao A (1994) Calculations of the electronic structure of various aperiodic polymers by an elongation method. Int J Quant Chem 52:309–319

    Article  CAS  Google Scholar 

  84. Tada T, Aoki Y, Imamura A (1998) The contributions of chalcogen to the Peierls instability in model crystals of charge-transfer complexes. Synth Met 95:169–177

    Article  CAS  Google Scholar 

  85. Imamura A (1999) Molecular orbital calculations of pi-electron conjugated polymers. Kobunshi 48:336

    CAS  Google Scholar 

  86. Imamura A, Aoki Y (2003) Method of controlling electric conductivity by modifying both terminals of compounds containing polyyne chains. Japan Patent JP2003016120A, 17 Jan 2003

  87. Imamura A, Aoki Y (2003) Parallel and layered structure process for efficient calculation of electronic state of giant molecules. Japan Patent JP2003012567A, 15 Jan 2003

  88. Ohnishi S, Gu FL, Naka K, Imamura A, Kirtman B, Aoki Y (2004) Calculation of static (hyper)polarizabilities for pi-conjugated donor/acceptor molecules and block copolymers by the elongation finite-field method. J Phys Chem A 108:8478–8484

    Article  CAS  Google Scholar 

  89. Tada T, Aoki Y, Imamura A (2004) An analytical molecular orbital approach in tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ). Mol Phys 102:1891–1901

    Article  CAS  Google Scholar 

  90. Imamura A, Aoki Y (2006) Molecular design of a pi-conjugated single-chain electronically conductive polymer. Int J Quant Chem 106:1924–1933

    Article  CAS  Google Scholar 

  91. Gagliano ER, Avignon M (1994) Electron-hole asymmetry in a generalized one-band Hubbard model. In: Noce C, Romano A, Scarpetta G (eds) Superconductivity and strongly correlated electron systems. World Scientific, Singapore, pp 226–240

    Google Scholar 

  92. Zaitsev RO, Mikhailova YV (1996) The electron-hole asymmetry of high temperature superconductors. Fiz Nizk Temp (Kiev) 22:510–514

    CAS  Google Scholar 

  93. Hirsch JE (2003) Electron-hole asymmetry is the key to superconductivity. Int J Mod Phys B 17:3236–3241

    Article  CAS  Google Scholar 

  94. Kobayashi A, Tsuruta A, Matsuura T, Kuroda Y (2004) Origins of electron-hole asymmetry in cuprate superconductors. J Magn Magn Mater 272–276:E187–E188

    Article  CAS  Google Scholar 

  95. Maciag A, Wrobel P (2006) Asymmetric tunneling conductance in doped antiferromagnets. Acta Phys Pol A 109:607–610

    CAS  Google Scholar 

  96. Hwang EH, Adam S, Das SS (2007) Carrier transport in two-dimensional graphene layers. Phys Rev Lett 98:186806

    Article  CAS  Google Scholar 

  97. Han W, Wang WH, Pi K, McCreary KM, Bao W, Li Y, Miao F, Lau CN, Kawakami RK (2009) Electron-hole asymmetry of spin injection and transport in single-layer graphene. Phys Rev Lett 102:137205

    Article  CAS  Google Scholar 

  98. Fan X-Y, Nouchi R, Yin L-C, Tanigaki K (2010) Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 21:475208

    Article  CAS  Google Scholar 

  99. Mucha-Kruczynski M, McCann E, Fal’ko VI (2010) Electron-hole asymmetry and energy gaps in bilayer graphene. Semicond Sci Technol 25:033001

    Article  CAS  Google Scholar 

  100. Vojta M, Fritz L, Bulla R (2010) Gate-controlled Kondo screening in graphene: quantum criticality and electron-hole asymmetry. EPL 90:27006

    Article  CAS  Google Scholar 

  101. Itoh K, Takui T (2004) High spin chemistry underlying organic molecular magnetism. Topological symmetry rule as the first principle of spin alignment in organic open-shell systems of Ï€-conjugation and their ions. Proc Japan Acad Ser B 80:29–40

    Article  CAS  Google Scholar 

  102. Kemp M, Roitberg A, Mujica V, Wanta T, Ratner MA (1996) Molecular wires: extended coupling and disorder effects. J Phys Chem 100:8349–8355

    Article  CAS  Google Scholar 

  103. Reimers JR, Hush NS (1990) Electron and energy transfer through bridged systems. VII. Electronically-forbidden but vibronically-allowed long-range transfer: a case study using norbornylog bridges. Chem Phys 146:105

    Article  CAS  Google Scholar 

  104. Wolfgang J, Risser SM, Priyadarshy S, Beratan DN (1997) Secondary structure conformations and long range electronic interactions in oligopeptides. J Phys Chem B 101:2986–2991

    Article  CAS  Google Scholar 

  105. Bixon M, Jortner J (1997) Electron transfer via bridges. J Chem Phys 107:5154–5170

    Article  CAS  Google Scholar 

  106. Balabin IA, Onuchic JN (2000) Dynamically controlled protein tunneling paths in photosynthetic reaction centers. Science 290:114–117

    Article  CAS  Google Scholar 

  107. Troisi A, Ratner MA, Nitzan A (2003) Vibronic effects in off-resonant molecular wire conduction. J Chem Phys 118:6072–6082

    Article  CAS  Google Scholar 

  108. Goldsmith RH, Wasielewski MR, Ratner MA (2006) Electron transfer in multiply bridged donor-acceptor molecules: Dephasing and quantum coherence. J Phys Chem B 110:20258–20262

    Article  CAS  Google Scholar 

  109. Gagliardi A, Solomon GC, Pecchia A, Frauenheim T, Di Carlo A, Hush NS, Reimers JR (2007) A priori method for propensity rules for inelastic electron tunneling spectroscopy of single-molecule conduction. Phys Rev B 75:174306/1–174306/8

    Article  CAS  Google Scholar 

  110. Skourtis SS, Waldeck DH, Beratan DN (2004) Inelastic electron tunneling erases coupling-pathway interferences. J Phys Chem B 108:15511–15518

    Article  CAS  Google Scholar 

  111. Andrews DQ, Van Duyne RP, Ratner MA (2008) Stochastic modulation in molecular electronic transport junctions: molecular dynamics coupled with charge transport calculations. Nano Lett 8:1120–1126

    Article  CAS  Google Scholar 

  112. Xiao D, Skourtis SS, Rubtsov IV, Beratan DN (2009) Turning charge transfer on and off in a molecular interferometer with vibronic pathways. Nano Lett 9:1818–1823

    Article  CAS  Google Scholar 

  113. Skourtis SS, Waldeck DH, Beratan DN (2010) Fluctuations in biological and bioinspired electron-transfer reactions. Ann Rev Phys Chem 61:461–485

    Article  CAS  Google Scholar 

  114. Landauer R (1957) Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1:223–231

    Article  Google Scholar 

  115. Buttiker M, Imry Y, Landauer R, Pinhas S (1985) Generalized man-channel conductance formula with application to small rings. Phys Rev B 31:6207–6215

    Article  Google Scholar 

  116. Meir Y, Wingreen NS (1992) Landauer formula for the current through an interacting electron region. Phys Rev Lett 68:2512–2515

    Article  Google Scholar 

  117. Data S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge

    Google Scholar 

  118. Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, Singapore

    Google Scholar 

  119. Pauly F, Viljas JK, Huniar U, Häfner M, Wohlthat S, Bürkle M, Cuevas JC, Schön G (2008) Cluster-based density-functional approach to quantum transport through molecular and atomic contacts. New J Phys 10:125019

    Article  CAS  Google Scholar 

  120. Solomon GC, Reimers JR, Hush NS (2005) Overcoming computational uncertainties to reveal chemical sensitivity in single molecule conduction calculations. J Chem Phys 122:224502-1–224502-7

    Google Scholar 

  121. Priyadarshy S, Skourtis SS, Risser SM, Beratan DN (1996) Bridge-mediated electronic interactions: differences between Hamiltonian and Green function partitioning in a non-orthogonal basis. J Chem Phys 104:9473–9481

    Article  CAS  Google Scholar 

  122. Kurnikov IV, Beratan DN (1996) Ab initio based effective Hamiltonians for long-range electron transfer: Hartree-Fock analysis. J Chem Phys 105:9561–9573

    Article  CAS  Google Scholar 

  123. Wang J, Guo H (2009) Relation between nonequilibrium Green’s function and Lippmann-Schwinger formalism in the first-principles quantum transport theory. Phys Rev B 79:045119

    Article  CAS  Google Scholar 

  124. Solomon GC, Herrmann C, Hansen T, Mujica V, Ratner MA (2010) Exploring local currents in molecular junctions. Nature Chem 2:223

    Article  CAS  Google Scholar 

  125. Weinberg S (1995) The quantum theory of fields. Cambridge University Press, London

    Google Scholar 

  126. Crayston JA, Devine JN, Walton JC (2000) Conceptual and synthetic strategies for the preparation of organic magnets. Tetrahedron 56:7829–7857

    Article  CAS  Google Scholar 

  127. Rajca A, Utamapanya S (1993) Toward organic synthesis of a magnetic particle: dendritic polyradicals with 15 and 31 centers for unpaired electrons. J Am Chem Soc 115:10688–10694

    Article  CAS  Google Scholar 

  128. Rajca A, Rajca S, Wongsriratanakul J (1999) Very high-spin organic polymer: pi-conjugated hydrocarbon network with average spin of S >=40. J Am Chem Soc 121:6308–6309

    Article  CAS  Google Scholar 

  129. Rajca A, Wongsriratanakul J, Rajca S (2001) Magnetic ordering in an organic polymer. Science 294:1503–1505

    Article  CAS  Google Scholar 

  130. Mataga N (1968) Possible “ferromagnetic states” of some hypothetical hydrocarbons. Theor Chim Acta 10:372–376

    Article  CAS  Google Scholar 

  131. Wohlthat S, Pauly F, Reimers JR (2008) The conduction properties of alpha-omega-diaminoalkanes and hydrazine bridging gold electrodes. Chem Phys Lett 454:284–288

    Article  CAS  Google Scholar 

  132. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian, Inc, Pittsburgh

    Google Scholar 

  133. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  134. TURBOMOLE V6.0 (2009) University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, Karlsruhe

  135. Wohlthat S, Kirchner T, Reimers JR (2009) N-silylamine junctions for molecular wires to gold: the effect of binding atom hybridization on the electronic transmission. J Phys Chem C 113:20458–20462

    Article  CAS  Google Scholar 

  136. Zeng J, Hush NS, Reimers JR (1996) Solvent effects on molecular and ionic spectra. VII: Modeling the absorption and electroabsorption spectra of pentaammineruthenium(II)-pyrazine and its conjugate acid in water. J Am Chem Soc 118:2059

    Article  CAS  Google Scholar 

  137. Shapley WA, Reimers JR, Hush NS (2002) INDO/S parameters for gold. Int J Quant Chem 90:424

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Computational Infrastructure (NCI) for providing computing resources and the Australian Research Council (ARC). G.C.S. acknowledges funding from The Danish Council for Independent Research|Natural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Reimers.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlthat, S., Solomon, G.C., Hush, N.S. et al. Interference-induced electron- and hole-conduction asymmetry. Theor Chem Acc 130, 815–828 (2011). https://doi.org/10.1007/s00214-011-1045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1045-2

Keywords

Navigation