Skip to main content

Advertisement

Log in

Theoretical investigation of hole mobility in 9,10-diphenylanthracene by density functional calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The charge transfer property of the 9,10-diphenylanthracene (DPA) single-crystal system was investigated by density functional calculations. The hole mobility of DPA was predicted according to a hopping mechanism and compared with that of two standard organic single-crystal systems, namely, naphthalene and anthracene. The reorganization energy was calculated by the adiabatic potential energy surface method. The electronic coupling matrix elements were calculated by two methods, namely, the energy splitting in dimer (ESD) method and charge transfer integral (CTI) method. Using the coupling matrix calculated by the CTI method, we predicted a hole mobility of 2.15 cm2/(Vs) for DPA, whereas the CTI method gives the values of 0.35 and 1.39 cm2/(Vs) for naphthalene and anthracene, respectively. It is shown that the electronic coupling calculated by the CTI method gives the qualitatively satisfactory result for the hole mobilities of the three single-crystal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brédas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971–5003

    Article  Google Scholar 

  2. Coropceanu V, Cornil J, da Silva Fiho DA, Olivier Y, Sibey R, Brédas JL (2007) Chem Rev 107:926–952

    Article  CAS  Google Scholar 

  3. Deng WQ, Goddard WA (2004) J Phys Chem B 108:8614–8621

    Article  CAS  Google Scholar 

  4. Wen SH, Li A, Song J, Deng WQ, Han KL, Goddard WA (2009) J Phys Chem B 113:8813–8819

    Article  CAS  Google Scholar 

  5. Irfan A, Zhang J, Chang Y (2010) Theor Chem Acc 127:587–594

    Article  CAS  Google Scholar 

  6. Gang H (2010) Theor Chem Acc 127:759–763

    Article  Google Scholar 

  7. Tripathi AK, Heinrich M, Siegrist T, Pflaum J (2007) Adv Mater 19:2097–2101

    Article  CAS  Google Scholar 

  8. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Science 303:1644–1646

    Article  CAS  Google Scholar 

  9. Marcus RA (1956) J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  10. Hush NS (1958) J Chem Phys 28:962–972

    Article  CAS  Google Scholar 

  11. Blancafort L, Duran M, Poater J, Salvador P, Simon S, Solà M, Voityuk AA (2009) Theor Chem Acc 123:29–40

    Article  CAS  Google Scholar 

  12. Berlin YA, Hutchison GR, Rempala P, Ratner MA, Michl J (2003) J Phys Chem A 107:3970–3980

    Article  CAS  Google Scholar 

  13. Newton MD (1991) Chem Rev 91:767–792

    Article  CAS  Google Scholar 

  14. Li H, Brédas JL, Lennartz C (2007) J Chem Phys 126:164704

    Article  Google Scholar 

  15. Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Brédas JL (2006) J Am Chem 128:9882–9886

    Article  CAS  Google Scholar 

  16. Löwdin PO (1950) J Chem Phys 18:365–375

    Article  Google Scholar 

  17. Senthilkumar K, Grozema FC, Guerra CF, Siebbeles LDA (2003) J Chem Phys 119:9809–9817

    Article  CAS  Google Scholar 

  18. Yang X, Li Q, Shuai Z (2007) Nanotechnology 18:424029

    Article  Google Scholar 

  19. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision C.02. Gaussian, Pittsburgh, PA

    Google Scholar 

  23. Morihashi K, Shimodo Y, Kikuchi O (2002) J Mol Struct (Theochem) 617:47–52

    Article  CAS  Google Scholar 

  24. Morihashi K, Shimodo Y, Kikuchi O (2004) Chem Phys Lett 397:461–468

    Article  Google Scholar 

  25. Morihashi K, Shimodo Y, Kikuchi O (2005) J Mol Struct (Theochem) 722:169–183

    Article  CAS  Google Scholar 

  26. Shimodo Y, Morihashi K, Nakano T (2006) J Mol Struct (Theochem) 770:163–168

    Article  CAS  Google Scholar 

  27. Liu YH, Xie Y, Lu ZY (2010) Chem Phys 367:160–166

    Article  CAS  Google Scholar 

  28. Brock CP, Dunitz JD (1982) Acta Crystallogr Sect B Struct Sci 38:2218–2228

    Article  Google Scholar 

  29. Brock CP, Dunitz JD (1990) Acta Crystallogr Sect B Struct Sci 46:795–806

    Article  Google Scholar 

  30. Karl N (2003) Synth Met 133–134:649–657

    Article  Google Scholar 

  31. Silinsh EA, Capek V (1994) Organic molecular crystals: interaction, localization and transport phenomena. American Institute of Physics, New York, pp 332–333

    Google Scholar 

  32. Becker HD (1992) Z Kristallogr 199:313–315

    Article  Google Scholar 

  33. Song J-W, Tsuneda T, Sato T, Hirao K (2011) Theor Chem Acc. doi: 10.1007/s00214-011-0997-6

  34. Wu Q, Van Voorhis T (2006) J Chem Phys 125:164105

    Article  Google Scholar 

  35. Ogawa T, Sumita M, Shimodo Y, Morihashi K (2011) Chem Phys Lett 511:219–223

    Article  CAS  Google Scholar 

  36. Wen SH, Li A, Song J, Deng WQ, Han KL, Goddard WA (2009) J Phys Chem B 113:8813–8819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Morihashi.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, S., Shimodo, Y. & Morihashi, K. Theoretical investigation of hole mobility in 9,10-diphenylanthracene by density functional calculations. Theor Chem Acc 130, 807–813 (2011). https://doi.org/10.1007/s00214-011-1042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1042-5

Keywords

Navigation