Skip to main content
Log in

The concerted and stepwise chemisorption mechanisms of isothiazole and thiazole on Si(100)−2 × 1 surface

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The surface reaction pathways of isothiazole and thiazole on Si(100)−2 × 1 surface were theoretically investigated using multireference wavefunctions. In the case of isothiazole, the Si–N dative adduct turned out to be the major surface product. In contrast, a direct reaction competition between a concerted [4 + 2]CC cycloaddition and Si–N dative adduct was found in the adsorption of thiazole. Therefore, it is concluded that the particular geometric arrangements of heteroatoms exhibit distinctly different initial surface reaction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi CH, Gordon MS (2001) Chemistry on silicon surfaces. In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 3. Chap. 15. Wiley, New York, pp 821–852

    Chapter  Google Scholar 

  2. Choi CH, Gordon MS (2004) Theoretical studies of silicon surface reactions with main group absorbates. In: Curtiss LA, Gordon MS (eds) Computational materials chemistry: methods and applications, chap 4. Kluwer Academic Publishers, Dordrecht, pp 125–190

    Google Scholar 

  3. Bilic A, Reimers J, Hush N (2006) Functionalization of semiconductor surfaces by organic layers: concerted cycloaddition versus stepwise free-radical reaction mechanism. In: Gruetter Peter, Rosei Federico, Hofer W (eds) Properties of single molecules on crystal surfaces, Chap 14. Imperial College Press, London

    Google Scholar 

  4. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlag Chemie, Weinheim

    Google Scholar 

  5. Nishijima M, Yoshinobu J, Tsuda H, Onchi M (1987) Surf Sci 192:383

    Article  CAS  Google Scholar 

  6. Yoshinobu J, Tsuda H, Onchi M, Nishijima M (1987) J Chem Phys 87:7332

    Article  CAS  Google Scholar 

  7. Taylor PA, Wallace RM, Cheng CC, Weinberg WH, Dresser MJ, Choyke WJ, Jr Yates JT (1992) J Am Chem Soc 114:6754

    Article  CAS  Google Scholar 

  8. Li L, Tindall C, Takaoka O, Hasegawa Y, Sakurai T (1997) Phys Rev B 56:4648

    Article  CAS  Google Scholar 

  9. Imamura Y, Morikawa Y, Yamasaki T, Nakasuji H (1995) Surf Sci 341:L1091

    Article  CAS  Google Scholar 

  10. Liu Q, Hoffmann R (1995) J Am Chem Soc 117:4082

    Article  CAS  Google Scholar 

  11. Rintelman JM, Gordon MS (2004) J Phys Chem B 108:7820

    Article  CAS  Google Scholar 

  12. Liu H, Hamers RJ (1997) J Am Chem Soc 119:7593

    Article  CAS  Google Scholar 

  13. Lopinski GP, Moffatt DJ, Wayner DDM, Wolkow RA (2000) J Am Chem Soc 122:3548

    Article  CAS  Google Scholar 

  14. Lee HS, Choi CH, Gordon MS (2005) J Phys Chem B 109:5067

    Article  CAS  Google Scholar 

  15. Konecny R, Doren D (1997) J Am Chem Soc 119:11098

    Article  CAS  Google Scholar 

  16. Teplyakov AV, Kong MJ, Bent SF (1997) J Am Chem Soc 119:11100

    Article  CAS  Google Scholar 

  17. Teplyakov AV, Kong MJ, Bent SF (1998) J Chem Phys 108:4599

    Article  CAS  Google Scholar 

  18. Hovis JS, Liu HB, Hamers RJ (1998) J Phys Chem B 102:6873

    Article  CAS  Google Scholar 

  19. Choi CH, Gordon MS (1999) J Am Chem Soc 121:11311

    Article  CAS  Google Scholar 

  20. Taguchi Y, Fujisawa M, Takaoka T, Okada T, Nishijima M (1991) J Chem Phys 95:6870

    Article  CAS  Google Scholar 

  21. Lopinski GP, Fortier TM, Moffatt DJ, Wolkow RA (1998) J Vac Sci Technol A 16:1037

    Article  CAS  Google Scholar 

  22. Kong MJ, Teplyakov AV, Bent SF (1998) Surf Sci 411:286

    Article  CAS  Google Scholar 

  23. Coutler SK, Hovis JS, Ellison MD, Hamers RJ (2000) J Vac Sci Technol A 18:1965

    Article  Google Scholar 

  24. Craig BI (1995) Surf Sci 280:L279

    Article  Google Scholar 

  25. Birkenheuer U, Gutdeutsch U, Rösch N (1998) Surf Sci 409:213

    Article  CAS  Google Scholar 

  26. Wolkow RA, Lopinski GP, Moffatt DJ (1998) Surf Sci 416:L1107

    Article  CAS  Google Scholar 

  27. Silvestrelli PL, Ancilotto F, Toigo F (2000) Phys Rev B 62:1596

    Article  CAS  Google Scholar 

  28. Alavi S, Rousseau R, Seideman T (2000) J Chem Phys 113:4412

    Article  CAS  Google Scholar 

  29. Jung Y, Gordon MS (2005) J Am Chem Soc 127:3131

    Article  CAS  Google Scholar 

  30. Hofer WA, Fisher AJ, Lopinski GP, Wolkow RA (2001) Phys Rev B 61:085314

    Article  Google Scholar 

  31. Alavi S, Rousseau R, Patitsas SN, Lopinski GP, Wolkow RA, Seideman T (2000) Phys Rev Lett 85:5327

    Article  Google Scholar 

  32. Choi CH, Gordon MS (2002) J Am Chem Soc 124:6162

    Article  CAS  Google Scholar 

  33. Tao F, Qiao MH, Wang ZH, Xu GQ (2003) J Phys Chem B 107:6384

    Article  CAS  Google Scholar 

  34. Tao F, Bernasek SL (2007) J Am Chem Soc 129:4815

    Article  CAS  Google Scholar 

  35. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  36. Sunberg KR, Ruedenberg K (1976) Quantum Science. In: Goscinski O, Linderberg J, Ohrn Y (eds) Calais JL. New York, Plenum

    Google Scholar 

  37. Cheung LM, Sunberg KR, Ruedenberg K (1979) Int J Quantum Chem 16:1103

    Article  CAS  Google Scholar 

  38. Ruedenberg K, Schmidt M, Gilbert MM, Elbert ST (1982) Chem Phys 71:41

    Article  CAS  Google Scholar 

  39. Roos BO, Taylor P, Siegbahn PE (1980) Chem Phys 48:157

    Article  CAS  Google Scholar 

  40. Schmidt MW, Gordon MS (1998) Annu Rev Phys Chem 49:233

    Article  CAS  Google Scholar 

  41. Warner HJ (1996) Mol Phys 89:645

    Article  Google Scholar 

  42. Glaesemann KR, Gordon MS, Nakano H (1999) Phys Chem Chem Phys 1:967

    Article  CAS  Google Scholar 

  43. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  44. Nakano H (1993) Chem Phys Lett 207:372

    Article  CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, JAJr Montgomery (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  46. Fletcher GD, Schmidt MW, Gordon MS (1999) Adv Chem Phys 110:267

    Article  CAS  Google Scholar 

  47. Shoemaker JR, Burgraff LW, Gordon MS (1999) J Phys Chem A 103:3245

    Article  CAS  Google Scholar 

  48. Choi CH, Liu D, Evans JW, Gordon MS (2002) J Am Chem Soc 124:8730

    Article  CAS  Google Scholar 

  49. Ghosh MK, Choi CH (2010) J Phys Chem C 114:14187

    Article  CAS  Google Scholar 

  50. Ghosh MK, Choi CH (2006) Chem Phys Lett 426:365

    Article  CAS  Google Scholar 

  51. Ghosh MK, Choi CH (2008) Chem Phys Lett 457:69

    Article  CAS  Google Scholar 

  52. Cho J, Choi CH (2008) J Phys Chem C 112:6907

    Article  CAS  Google Scholar 

  53. Ghosh MK, Choi CH (2006) J Phys Chem B 110:11277

    Article  CAS  Google Scholar 

  54. Ghosh MK, Sarker MIM, Choi CH (2008) J Phys Chem C 112:9327

    Article  CAS  Google Scholar 

  55. Ghosh MK, Choi CH (2008) Chem Phys Lett 461:249

    Article  CAS  Google Scholar 

  56. Cho J, Ghosh MK, Choi CH (2009) Bull Korean Chem Soc 30:1805

    Article  CAS  Google Scholar 

  57. Zorn DD, Albao MA, Evans JW, Gordon MS (2009) J Phys Chem C 113:7277

    Article  CAS  Google Scholar 

  58. Lee HS, Choi CH (2008) Theor Chem Acc 120:79

    Article  CAS  Google Scholar 

  59. Tamura H, Gordon MS (2003) J Chem Phys 119:10318

    Article  CAS  Google Scholar 

  60. Zapol P, Curtiss LA, Tamura H, Gordon MS (2004) Theoretical studies of growth reactions on diamond surfaces. In: Curtiss LA, Gordon MS (eds) Computational materials chemistry: methods and applications. Kluwer Academic Publishers, Boston, pp 266–307

    Google Scholar 

  61. Allinger NL, Yuh YH, Lii JH (1989) J Am Chem Soc 111:8551

    Article  CAS  Google Scholar 

  62. Lii JH, Allinger NL (1989) J Am Chem Soc 111:8566

    Article  CAS  Google Scholar 

  63. Lii JH, Allinger NL (1989) J Am Chem Soc 111:8576

    Article  CAS  Google Scholar 

  64. Lu X, Xu X, Wu J, Wang N, Zhang Q (2002) New J Chem 26:160

    Article  CAS  Google Scholar 

  65. Lim C, Choi CH (2003) J Phys Chem B 107:6853

    Article  CAS  Google Scholar 

  66. Lu X, Xu X, Wang N, Zhang Q, Lin MC (2001) J Phys Chem B 105:10069

    Article  CAS  Google Scholar 

  67. Beno BR, Houk KN, Singleton DA (1996) J Am Chem Soc 118:9984

    Article  CAS  Google Scholar 

  68. Garcia JI, Martinez-Merino V, Mayoral JA, Salvatella L (1998) J Am Chem Soc 120:2415

    Article  CAS  Google Scholar 

  69. Paton RS, Mackey JL, Kim WH, Lee JH, Danishefsky SJ, Houk KN (2010) J Am Chem Soc 132:9335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government(MEST) (No. 2011-0001213 and No. 2011-0005032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Ho Choi.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M.K., Choi, C.H. The concerted and stepwise chemisorption mechanisms of isothiazole and thiazole on Si(100)−2 × 1 surface. Theor Chem Acc 130, 507–513 (2011). https://doi.org/10.1007/s00214-011-1035-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1035-4

Keywords

Navigation