Skip to main content
Log in

Tuning graphene nanoribbon field effect transistors via controlling doping level

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

By performing first-principles transport simulations, we demonstrate that n-type transfer curves can be obtained in armchair-edged graphene nanoribbon field effect transistors by the potassium atom and cobaltocene molecule doping, or substituting the carbon by nitrogen atom. The Dirac point shifts downward from 0 to −12 V when the n-type impurity concentration increases from 0 to 1.37%, while the transfer curves basically maintain symmetric feature with respect to the Dirac point. In general, the on/off current ratios are decreased and subthreshold swings are increased with the increasing doping level. Therefore, the performance of armchair-edged graphene nanoribbon field effect transistors can be controlled via tuning the impurity doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  4. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453

    Article  CAS  Google Scholar 

  5. Son Y-W, Cohen ML, Louie SG (2006) Energy Gaps in Graphene Nanoribbons. Phys Rev Lett 97(21):216803

    Article  Google Scholar 

  6. Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444(7117):347–349

    Article  CAS  Google Scholar 

  7. Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6(12):2748–2754

    Article  CAS  Google Scholar 

  8. Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98(20):206805

    Article  Google Scholar 

  9. Yan QM, Huang B, Yu J, Zheng FW, Zang J, Wu J, Gu BL, Liu F, Duan WH (2007) Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 7(6):1469–1473

    Article  CAS  Google Scholar 

  10. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655

    Article  CAS  Google Scholar 

  11. Li XL, Wang XR, Zhang L, Lee SW, Dai HJ (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867):1229–1232

    Article  CAS  Google Scholar 

  12. Wang XR, Li XL, Zhang L, Yoon Y, Weber PK, Wang HL, Guo J, Dai HJ (2009) N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science 324(5928):768–771

    Article  CAS  Google Scholar 

  13. Wang ZF, Li QX, Shi QW, Wang XP, Hou JG, Zheng HX, Chen J (2008) Ballistic rectification in a Z-shaped graphene nanoribbon junction. Appl Phys Lett 92(13):3

    Google Scholar 

  14. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys: Condens Mat 14(11):2745–2779

    Article  CAS  Google Scholar 

  15. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  16. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188

    Article  Google Scholar 

  17. Wang L, Cai ZX, Wang JY, Lu J, Luo GF, Lai L, Zhou J, Qin R, Gao ZX, Yu DP, Li GP, Mei WN, Sanvito S (2008) Novel One-Dimensional Organometallic Half Metals: Vanadium-Cyclopentadienyl, Vanadium-Cyclopentadienyl-Benzene, and Vanadium-Anthracene Wires. Nano Lett 8(11):3640–3644

    Article  CAS  Google Scholar 

  18. Taylor J, Guo H, Wang J (2001) Ab initio modeling of quantum transport properties of molecular electronic devices. Phys Rev B 63(24):245407

    Article  Google Scholar 

  19. Brandbyge M, Mozos JL, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401

    Article  Google Scholar 

  20. Datta S (1995) Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, England

    Google Scholar 

  21. Mulliken RS (1955) Electronic Population Analysis on Lcao-Mo Molecular Wave Functions.3. Effects of Hybridization on Overlap and Gross Ao Populations. J Chem Phys 23(12):2338–2342

    CAS  Google Scholar 

  22. Newman CR, Frisbie CD, da Silva DA, Bredas JL, Ewbank PC, Mann KR (2004) Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mat 16(23):4436–4451

    Article  CAS  Google Scholar 

  23. Xia FN, Farmer DB, Lin YM, Avouris P (2010) Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature. Nano Lett 10(2):715–718

    Article  CAS  Google Scholar 

  24. Qi P, Javey A, Rolandi M, Wang Q, Yenilmez E, Dai H (2004) Miniature Organic Transistors with Carbon Nanotubes as Quasi-One-Dimensional Electrodes. J Am Chem Soc 126(38):11774–11775

    Article  CAS  Google Scholar 

  25. Li Y, Zhou Z, Shen P, Chen Z (2009) Spin Gapless Semiconductor-Metal-Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons. ACS Nano 3(7):1952–1958

    Article  CAS  Google Scholar 

  26. Schwierz F (2010) Graphene Transistors. Nat Nanotechnol 5(7):487–496

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in Japan by the Grant-in-Aid for Scientific Research on Priority Area and Next Generation Super Computing Project (Nanoscience Program) from the MEXT of Japan, in China by the NSFC (Grant Nos. 10774003, 10474123, 10434010, 90606023, and 20731160012) and National 973 Projects (Nos. 2002CB613505 and 2007CB936200, MOST of China), and in USA by Nebraska Research Initiative and DOE DE-EE0003174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1.23 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zheng, J., Zhou, J. et al. Tuning graphene nanoribbon field effect transistors via controlling doping level. Theor Chem Acc 130, 483–489 (2011). https://doi.org/10.1007/s00214-011-1026-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1026-5

Keywords

Navigation