Skip to main content
Log in

Role of hydrogen bonds in acid-catalyzed hydrolyses of esters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Acid-catalyzed ester hydrolyses were studied by means of DFT calculations. A model composed of ester and H3O+(H2O)15 was adopted, and substrates esters are ethyl acetate, ethyl para-X-substituted benzoates (X = O2N, Cl, H, iso-Bu, MeO, and Me2N), and isobutyl benzoate. For the ethyl acetate, a stepwise path, precursor → TS1 → Int1 → Int2 → TS2 → product, was obtained. Here, TS is the transition state, and Int is the tetrahedral intermediate. The path is somewhat different from the established AAC2 mechanism; the carbocation intermediate was calculated to be absent in the present model. The absence holds even for benzoates that may stabilize the cation except the X = Me2N substituted one. At each local energy minimum, the cation character is retained in H3O+. Proton relays along hydrogen bonds were found to prompt interchanges of covalent bonds. The rate-determining step is either TS1 for the electron-withdrawing X or TS2 for the electron-donating one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

References

  1. Solomons TWG (1996) Organic chemistry, 6th edn. Wiley, New York, p 812

    Google Scholar 

  2. Datta SC, Day JNE, Ingold CK (1939) J Chem Soc 838

  3. Day JNE, Ingold CK (1941) Trans Faraday Soc 37:686

    Article  CAS  Google Scholar 

  4. Laidler KJ, Landskroener PA (1956) Trans Faraday Soc 52:200

    Article  CAS  Google Scholar 

  5. Timm EW, Hinshelwood CN (1938) J Chem Soc 862

  6. Bender ML (1951) J Am Chem Soc 73:1626

    Article  CAS  Google Scholar 

  7. Carey FA, Sundberg RJ (1984) Advanced organic chemistry, Part A: structure and mechanisms, chapter 8.4, 2nd edn. Plenum Press, New York and London

    Google Scholar 

  8. Roberts I, Urey HC (1938) J Am Chem Soc 60:2391

    Article  CAS  Google Scholar 

  9. Brown RS, Bennett AJ, Slebocka-Tilk H (1992) Acc Chem Res 25:481

    Article  CAS  Google Scholar 

  10. Yamabe S, Tsuchida N, Hayashida Y (2005) J Phys Chem A 109:7216

    Article  CAS  Google Scholar 

  11. Lesutis HP, Glaeser R, Liotta CL, Eckert CA (1999) Chem Commun 2063

  12. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  13. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  14. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  15. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  16. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  17. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253

    Article  CAS  Google Scholar 

  18. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  19. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  20. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001) J Chem Phys 115:10291

    Article  CAS  Google Scholar 

  21. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Scuseria GE, Daniels AD, Frisch MJ (2001) J Chem Phys 114:9758

    Article  CAS  Google Scholar 

  22. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) J Chem Phys 117:8694

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A. 1. Gaussian, Wallingford, CT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yamabe.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2011_1019_MOESM1_ESM.doc

Supporting Information: Figures S1-S8 and Cartesian coordinates of TS geometries of Figures 1, 2, 4, and 6. (DOC 1039 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamabe, S., Fukuda, T. & Ishii, M. Role of hydrogen bonds in acid-catalyzed hydrolyses of esters. Theor Chem Acc 130, 429–438 (2011). https://doi.org/10.1007/s00214-011-1019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1019-4

Keywords

Navigation