Skip to main content

Advertisement

Log in

Thermodynamic aspects of fibroblastic spreading on diamond-like carbon films containing titanium dioxide nanoparticles

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The combination of low friction, wear resistance, high hardness, biocompatibility, and chemical inertness makes diamond-like carbon (DLC) films suitable in numerous applications in biomedical engineering. The cytotoxicity of DLC films containing TiO2 nanoparticles was practical and theoretically evaluated. The films were grown on 316L stainless steel substrates from a dispersion of TiO2 nanopowder in hexane. Raman spectroscopy shows that the presence of TiO2 increased the graphite-like bonds in the films. The incorporation of TiO2 nanoparticles into DLC films increases surface roughness, decreases water contact angle (increased hydrophilic character), and increases the total free surface energy due to the higher polar component. As the concentration of TiO2 increased, the films increased the cell viability (MTT assay), becoming more thermodynamically favorable to cell spreading (ΔF Adh values became more negative). This was evidenced through the increasing number of projections (philopodia and lamellipodia), indicating a higher adhesion between the L929 cells and the films. The practical and theoretical findings of this study show that the incorporation of TiO2 into DLC films is effective in enhancing cell viability. These results show the potential use of DLC and TiO2-DLC films in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500:28–60

    Article  CAS  Google Scholar 

  2. Randeniya LK, Bendavid A, Martin PJ, Amin MS, Rohanizadeh R, Tang F, Cairney JM (2010) Thin-film nanocomposites of diamond-like carbon and titanium oxide; Osteoblast adhesion and surface properties. Diamond Relat Mater 19:329–335

    Article  CAS  Google Scholar 

  3. Karakeçili AG, Gümüsderelioglu M (2008) Physico-chemical and thermodynamic aspects of fibroblastic attachment on RGDS-modified chitosan membranes. Coll Surf B 61:216–223

    Article  Google Scholar 

  4. Chai F, Mathis N, Blanchemain N, Meunier C, Hildebrand HF (2008) Osteoblast interaction with DLC-coated Si substrates. Acta Biomater 4:1369–1381

    Article  CAS  Google Scholar 

  5. Robertson J (2002) Diamond-like amorphous carbon. Mat Sci Eng R 37:129–281

    Article  Google Scholar 

  6. Donnet C, Fontaine J, Le Mogne T, Belin M, Héau C, Terrat JP, Vaux F, Pont G (1999) Diamond-like carbon-based functionally gradient coatings for space tribology. Surf Coat Technol 120–212:548–554

    Article  Google Scholar 

  7. Donnet C, Grill A (1997) Friction control of diamond-like carbon coatings. Surf Coat Technol 94–95:456–462

    Article  Google Scholar 

  8. Yun DY, Choi WS, Park YS, Hong B (2008) Effect of H2 and O2 plasma etching treatment on the surface of diamond-like carbon thin film. Appl Surf Sci 254:7925–7928

    Article  CAS  Google Scholar 

  9. Shirakura A, Nakaya M, Koga Y, Kodama H, Hasebe T, Suzuki T (2006) Diamond-like carbon films for PET bottles and medical applications. Thin Sol Films 494:84–91

    Article  CAS  Google Scholar 

  10. Morrison ML, Buchanan RA, Berry LiawPK, CJ BrigmonRL, Riester L, Abernathy H, Jin C, Narayan RJ (2006) Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films. Diamond Relat Mater 15:138–146

    Article  CAS  Google Scholar 

  11. Uzumaki ET, Lambert CS, Santos AR Jr, Zavaglia CAC (2006) Surface properties and cell behaviour of diamond-like carbon coatings produced by plasma immersion. Thin Sol Films 515:293–300

    Article  CAS  Google Scholar 

  12. Zhang S, Du H, Ong SE, Aung KN, Too HC, Miao X (2006) Bonding structure and haemocompatibility of silicon-incorporated amorphous carbon. Thin Sol Films 515:66–72

    Article  CAS  Google Scholar 

  13. Hauert R (2003) A review of modified DLC coatings for biological applications. Diamond Relat Mater 12:583–589

    Article  CAS  Google Scholar 

  14. Nakamura T, Ohana T, Suzuki M, Ishihara M, Tanaka A, Koga Y (2005) Surface modification of diamond-like carbon films with perfluorooctyl functionalities and their surface properties. Surf Sci 580:101–106

    Article  CAS  Google Scholar 

  15. Chen JY, Wang LP, Fu KY, Huang N, Leng Y, Leng YX, Yang P, Wang J, Wan GJ, Sun H, Tian XB, Chu PK (2002) Blood compatibility and sp3/sp2 contents of diamond-like carbon (DLC) synthesized by plasma immersion ion implantation-deposition. Surf Coat Technol 156:289–294

    Article  CAS  Google Scholar 

  16. Zhao Q, Liu Y, Wang C, Wang S (2007) Bacterial adhesion on silicon-doped diamond-like carbon films. Diamond Relat Mater 16:1682–1687

    Article  CAS  Google Scholar 

  17. Ma WJ, Ruys AJ, Mason RS, Martin PJ, Bendavid A, Liu Z, Ionescu M, Zreiqat H (2007) DLC coatings: Effects of physical and chemical properties on biological response. Biomaterials 28:1620–1628

    Article  CAS  Google Scholar 

  18. McLaughlin JA, Meenan B, Maguire P, Jamieson N (1996) Properties of diamond like carbon thin film coatings on stainless steel medical guidewires. Diamond Relat Mater 5:486–491

    Article  CAS  Google Scholar 

  19. Yokota T, Terai T, Kobayashi T, Meguro T, Iwaki M (2007) Cell adhesion to nitrogen-doped DLCs fabricated by plasma-based ion implantation and deposition method using toluene gas. Surf Coat Technol 201:8048–8051

    Article  CAS  Google Scholar 

  20. Rich A, Harris AK (1981) Anomalous preferences of macrophages for roughened and hydrophobic substrata. J Cell Sci 50:1–7

    CAS  Google Scholar 

  21. Nakano H, Hasuike H, Kisoda K, Nishio K, Isshiki T, Harima H (2009) Synthesis of TiO2 nanocrystals controlled by means of the size of magnetic elements and the level of doping with them. J Phys Condens Matter 21:064214

    Article  CAS  Google Scholar 

  22. Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A Chem 130:163–170

    Article  CAS  Google Scholar 

  23. Shun-Wen W, Bing P, Li-Yuan C, Yun-Chao L, Zhu-Ying L (2008) Preparation of doping titania antibacterial powder by ultrasonic spray pyrolysis. Trans Nonferrous Met Soc China 18:1145–1150

    Article  Google Scholar 

  24. Thorwarth G, Saldamli B, Schwarz F, Jürgens P, Leiggener C, Sader R, Haeberlen M, Assmann W, Stritzker B (2007) Biocompatibility of doped diamond-like carbon coatings for medical implants. Plasma Process Polym 4:S364–S368

    Article  Google Scholar 

  25. Amin MS, Randeniya LK, Bendavid A, Martin PJ, Preston EW (2009) Amorphous carbonated apatite formation on diamond-like carbon containing titanium oxide. Diamond Relat Mater 18:1139–1144

    Article  CAS  Google Scholar 

  26. Marciano FR, Lima-Oliveira DA, Da-Silva NS, Diniz AV, Corat EJ, Trava-Airoldi VJ (2009) Antibacterial activity of DLC films containing TiO2 nanoparticles. J Colloid Interface Sci 340:87–92

    Article  CAS  Google Scholar 

  27. Bonetti LF, Capote G, Santos LV, Corat EJ, Trava-Airoldi VJ (2006) Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer. Thin Solid Films 515:375–379

    Article  CAS  Google Scholar 

  28. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  29. Lobo AO, Antunes EF, Machado AHA, Pacheco-Soares C, Trava-Airoldi VJ, Corat EJ (2008) Cell viability and adhesion on as grown multi-wall carbon nanotube films. Mat Sci Eng C 28:264–269

    Article  CAS  Google Scholar 

  30. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  CAS  Google Scholar 

  31. Young T (1805) An essay on the cohesion of fluids. Philos Trans Roy Soc 95:65–87

    Article  Google Scholar 

  32. Van Oss CJ, Good RJ, Chaundhury MK (1986) The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. J Colloid Interf Sci 111:378–390

    Article  Google Scholar 

  33. Choi HW, Dauskardt RH, Lee SC, Lee KR, Oh KH (2008) Characteristic of silver doped DLC films on surface properties and protein adsorption. Diamond Relat Mater 17:252–257

    Article  CAS  Google Scholar 

  34. Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Ch Baquey (2006) Investigation of the cytotoxicity of CCVD carbon nanotubes. J Mater Sci 41:2411–2416

    Article  CAS  Google Scholar 

  35. Schakenraad JM, Busscher HJ, Wildevuur CRH, Arends J (1988) Thermodynamic aspects of cell spreading on solid substrata. Cell Biophys 13:75–91

    CAS  Google Scholar 

  36. Liu C, Zhao Q, Liu Y, Wang S, Abel EW (2008) Reduction of bacterial adhesion on modified DLC coatings. Colloids Surf B Biointerfaces 61:182–187

    Article  CAS  Google Scholar 

  37. Schneider RP (1996) Conditioning film-induced modification of substratum physicochemistry—analysis by contact angles. J Colloid Interface Sci 182:204–213

    Article  CAS  Google Scholar 

  38. Wang J, Huang N, Pan CJ, Kwok SCH, Yang P, Leng YX, Chen JY, Sun H, Wan GJ, Liu ZY, Chu PK (2004) Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition. Surf Coat Technol 186:299–304

    Article  CAS  Google Scholar 

  39. Tuinstra F, Koening JF (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  40. Dillon O, Woollam J, Katkanant V (1984) Use of Raman-scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon-films. Phys Rev B 29:3482–3489

    Article  CAS  Google Scholar 

  41. Beeman D, Silvermann J, Lynds R, Anderson MR (1984) Modeling studies of amorphous carbon. Phys Rev B 30:870–875

    Article  CAS  Google Scholar 

  42. Tamor MA, Vassell WC (1994) Raman fingerprinting of amorphous-carbon films. J Appl Phys 76:3823–3830

    Article  CAS  Google Scholar 

  43. Casiraghi C, Piazza F, Ferrari AC, Grambole D, Robertson J (2005) Bonding in hydrogenated diamond-like carbon by Raman spectroscopy. Diamond Relat Mater 14:1098–1102

    Article  CAS  Google Scholar 

  44. Casiraghi C, Ferrari AC, Robertson J (2005) Raman spectroscopy of hydrogenated amorphous carbons. Phys Rev B 72:085401–085414

    Article  Google Scholar 

  45. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    Article  CAS  Google Scholar 

  46. Yao KS, Wang DY, Chang CY, Weng KW, Yang LY, Lee SJ, Cheng TC, Hwang CC (2007) Photocatalytic disinfection of phytopathogenic bacteria by dye-sensitized TiO2 thin film activated by visible light. Surf Coat Technol 202:1329–1332

    Article  CAS  Google Scholar 

  47. Sobczyk-Guzenda A, Gazicki-Lipman M, Szymanowski H, Kowalski J, Wojciechowski P, Halamus T, Tracz A (2009) Characterization of thin TiO2 films prepared by plasma enhanced chemical vapour deposition for optical and photocatalytic applications. Thin Sol Films 517:5409–5414

    Article  CAS  Google Scholar 

  48. Tamada Y, Ikada Y (1994) Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater Res 28:783–789

    Article  CAS  Google Scholar 

  49. van Wachem P, Hogt A, Beugeling T, Feijen J, Bantjes A, Detmers J, van Aken W (1987) Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 8:323–328

    Article  Google Scholar 

  50. Ikada Y (1994) Surface modification of polymers for medical applications. Biomaterials 15:726–736

    Article  Google Scholar 

  51. Hasson J, Wiebe D, Abbott W (1987) Adult human vascular endothelial cell attachment and migration on novel bioabsorbable polymers. Arch Surg 122:428–430

    CAS  Google Scholar 

  52. Roy PK, Choi HW, Yi JW, Moon MW, Lee KR, Han DK, Shin JH, Kamijo A, Hasebe T (2009) Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater 5:249–256

    Article  CAS  Google Scholar 

  53. Roy RK, Choi HW, Park SJ, Lee KR (2007) Surface energy of the plasma treated Si incorporated diamond-like carbon films. Diamond Relat Mater 16:1732–1738

    Article  CAS  Google Scholar 

  54. Redey SA, Razzouk S, Rey C, Bernache-Assollant D, Leroy G, Nardin M, Cournot G (1999) Osteoclast adhesion and activity on synthetic hydroxyapatite, carbonated hydroxyapatite, and natural calcium carbonate: relationship to surface energies. J Biomed Mater Res 45:140–147

    Article  CAS  Google Scholar 

  55. Hallab N, Bundy K, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71

    Article  CAS  Google Scholar 

  56. Sniadecki NJ, Desai RA, Ruiz AS, Chen CS (2005) Nanotechnology for cell–substrate interactions. Ann Biomed Eng 34:59–74

    Article  Google Scholar 

  57. Thomas V, Dean DR, Vohra YK (2006) Nanostructured Biomaterials for regenerative medicine. Curr Nanosci 2:3155–17757

    Google Scholar 

  58. Van der Valk P, Van Pelt AWJ, Busscher HJ, de Jong HP, ChRH Wildevuur, Arends J (1983) Interaction of fibroblasts and polymer surfaces: relationship between surface free energy and fibroblast spreading. J Biomed Mater Res 17:807–817

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Marciano.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marciano, F.R., Wachesk, C.C., Lobo, A.O. et al. Thermodynamic aspects of fibroblastic spreading on diamond-like carbon films containing titanium dioxide nanoparticles. Theor Chem Acc 130, 1085–1093 (2011). https://doi.org/10.1007/s00214-011-1018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1018-5

Keywords

Navigation