Skip to main content
Log in

Unsaturation in homoleptic tetranuclear iridium carbonyls: a comparison of density functional theory with the MP2 method in metal cluster structures

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The lowest energy Ir4(CO)12 structure is predicted by density functional theory to be a triply bridged structure analogous to the experimental structures for its lighter congeners M4(CO)9(μ-CO)3 (M=Co, Rh). The experimental unbridged structure for Ir4(CO)12 is predicted to lie ~6 kcal/mol above the triply bridged structure. However, the MP2 method predicts the unbridged structure for Ir4(CO)12 to be the lowest energy structure by ~9 kcal/mol over the triply bridged structure. The lowest energy Ir4(CO)11 structure is predicted to be a doubly bridged structure with a central tetrahedral Ir4 unit. A higher energy Ir4(CO)11 structure at ~18 kcal/mol above this global minimum is found with an unusual μ4-CO group bridging all four atoms of a central Ir4 butterfly. This Ir4(CO)8(μ-CO)24-CO) structure is analogous to the lowest energy Co4(CO)11 structure found in a previous theoretical study, as well as Rh4(CO)4(μ-CO)4(PBu t3 )2(PtPBu t3 )(μ4-CO), which has been synthesized by Adams and coworkers. The Ir4 tetrahedron is remarkably persistent in the more highly unsaturated Ir4(CO) n (n = 10, 9, 8) structures with relatively little changes in the Ir–Ir distances as carbonyl groups are removed. This appears to be related to the spherical aromaticity in the tetrahedral Ir4 structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hieber W, Lagally HZ (1940) Anorg Chem 245:321

    Article  CAS  Google Scholar 

  2. Chaston SHH, Stone FGA (1969) J Chem Soc A, 500

  3. Whyman R (1972) J Chem Soc Dalton 2294

  4. Malatesta L, Caglio G, Angoletta M (1972) Inorg Syn 13:95

    Article  Google Scholar 

  5. Stuntz GF, Shapley JR (1976) Inorg Nucl Chem Lett 12:49

    Article  CAS  Google Scholar 

  6. Churchill MR, Hutchinson JP (1978) Inorg Chem 17:3528

    Article  CAS  Google Scholar 

  7. Wei CH, Dahl LFJ (1966) Am Chem Soc 88:1821

    Article  CAS  Google Scholar 

  8. Wei CH (1969) Inorg Chem 8:2384

    Article  CAS  Google Scholar 

  9. Farrugia LJJ (2000) Cluster Sci 11:39

    Article  CAS  Google Scholar 

  10. Dahlinger K, Falcone F, Poë AJ (1986) Inorg Chem 25:2654

    Article  CAS  Google Scholar 

  11. Zhang X, Li Q-s, Xie Y, King RB, Schaefer HF (2008) Eur J Inorg Chem, 2158

  12. Adams RD, Captain B, Pellechiaq PJ, Smith JL (2004) Inorg Chem 43:2695

    Article  CAS  Google Scholar 

  13. Li Q-s, Xu B, Xie Y, King RB, Schaefer HF (2007) Dalton Trans 4312

  14. Xu B, Li Q-S, Xie Y, King RB, Schaefer HF (2008) Dalton Trans, 1366

  15. Ehlers AW, Frenking GJ (1994) Am Chem Soc 116:1514

    Article  CAS  Google Scholar 

  16. Li J, Schreckenbach G, Ziegler TJ (1995) Am Chem Soc 117:486

    Article  CAS  Google Scholar 

  17. Jonas V, Thiel WJ (1995) Chem Phys 102:8474

    CAS  Google Scholar 

  18. Brynda M, Gagliardi L, Wimark PO, Power PP, Roos BO (2006) Angew Chem Int Ed 45:3804

    Article  CAS  Google Scholar 

  19. Zhao Y, Truhlar DG (2006) J Chem Phys 124: 224105

    Google Scholar 

  20. Niu S, Hall MB (2000) Chem Rev 100:353

  21. Buhl M, Kabrede H (2006) J Chem Theory Comput 2:1282

    Google Scholar 

  22. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  23. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  24. Adamo C, Barone VJ (1998) Chem Phys 108:664

    CAS  Google Scholar 

  25. Feng X, Gu J, Xie Y, King RB, Schaefer HFJ (2007) Chem Theory Comput 3:1580

    Article  CAS  Google Scholar 

  26. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  27. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem Symp 10:1

    Article  CAS  Google Scholar 

  28. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  29. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431

    Article  CAS  Google Scholar 

  30. Dunning THJ (1970) Chem Phys 53:2823

    CAS  Google Scholar 

  31. Huzinaga SJ (1965) Chem Phys 42:1293

    Google Scholar 

  32. Frisch MJ et al. (2004) Gaussian 03, Revision C 02; Gaussian, Inc.; Wallingford CT (see Supporting Information for details)

  33. Papas BN, Schaefer HFJ (2006) Mol Struct 768:175

    CAS  Google Scholar 

  34. Silaghi-Dumitrescu I, Bitterwolf TE, King RBJ (2006) Am Chem Soc 128:5342

    Article  CAS  Google Scholar 

  35. Jonas V, Thiel W (1995) J Chem Phys 102:8474

    Article  CAS  Google Scholar 

  36. Wei CH, Wilkes GR, Dahl LFJ (1967) Am Chem Soc 89:4792

    Article  CAS  Google Scholar 

  37. Hartwig J (2009) Organotransition metal chemistry: from bonding to catalysis. University Science Books, Sausalito, CA

    Google Scholar 

  38. Crabtree RH (2009) The organometallic chemistry of the transition metals, 5th edn. Wiley, New York, pp 25–32

    Google Scholar 

  39. Hirsch A, Chen Z, Jiao H (2001) Angew Chem Int Ed 40:2834

    Article  CAS  Google Scholar 

  40. Chen Z, King RB (2005) Chem Rev 105:3613

    Article  CAS  Google Scholar 

  41. Weinhold F, Landis CR, Valency Bonding (2005) A natural bond order donor-acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  42. Sunderlin LS, Wang D, Squires RRJ (1993) Am Chem Soc 115:12060

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to the Scientific Research Fund of State Key Laboratory of Explosion Science and Technology (2DkT10-01a) and the Research Fund for the Doctoral Program of Higher Education (20104407110007) of China as well as the U. S. National Science Foundation (Grants CHE-0716718 and CHE-1054286) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian-shu Li or R. Bruce King.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2011_1005_MOESM1_ESM.pdf

Tables S1–S17: Theoretical harmonic vibrational frequencies for the Ir4(CO) n (n = 12, 11, 10, 9, and 8) structures using the BP86 and MPW1PW91 methods; Tables S18–S34: Theoretical Cartesian coordinates for the Ir4(CO) n (n = 12, 11, 10, 9, and 8) structures using the BP86 method; Table S35: Wiberg bond indices for the Ir–Ir interactions in selected Ir4(CO) n structures (n = 12, 11, 10, 9, and 8) using the three DFT methods; Complete Gaussian reference (reference 32). (PDF 275 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, Q.K., Li, Qs., Xie, Y. et al. Unsaturation in homoleptic tetranuclear iridium carbonyls: a comparison of density functional theory with the MP2 method in metal cluster structures. Theor Chem Acc 130, 393–400 (2011). https://doi.org/10.1007/s00214-011-1005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-1005-x

Keywords

Navigation